Время собирать жидкостное охлаждение ПК

Лучшие системы водяного охлаждения (СВО)

Ежегодно производительность комплектующих ПК растет. По понятным причинам, в редакции «ТехноРейтинг» решили уделить должное внимание лучшим системам водяного охлаждения 2022 года. В настоящее время существуют несколько способов охлаждения чипов процессоров и видеокарт:

  • пассивное охлаждение (радиатор);
  • активное охлаждение (башенный кулер);
  • водяное охлаждение.

Водяные системы самые дорогие, нуждаются в регулярном обслуживании, их эффективность выше, чем у воздушных моделей. Ниже приведена сравнительная таблица типов охлаждения:

Пассивные системы просты за счет отсутствия движущихся элементов, но все их достоинства сводятся к нулю из-за низкой эффективности. Таким образом, на рынке остаются востребованными «воздушки» и «водянки». Мы подобрали для вас топ лучших систем жидкостного охлаждения на рынке. Система водяного охлаждения состоит из нескольких частей:

  1. Ватерблок. Элемент, контактирующий с крышкой процессора и осуществляющий первую ступень отведения тепла.
  2. Помпа. Осуществляет перекачку охлаждающей жидкости по контуру.
  3. Шланги. По ним передается охлаждающая жидкость.
  4. Внешний охладитель. Представляет собой радиатор с вентиляторами.
  5. Внутренний охладитель. Жидкость, состоящая из смеси дестилированной воды и присадок (антикоррозионные и антибактериальные ингибиторы).
  6. Контур. Вся система охлаждения в сборе.

Из внешнего охладителя при помощи помпы, жидкость по шлангам поступает к ватерблоку, в котором происходит передача тепла от крышки процессора к ватерблоку через медное днище. Нагретая жидкость перекачивается к внешнему охладителю, остужаясь.

реклама

Ситуация с флагманскими домашними процессорами обстоит так, что воздушное охлаждение уже в штатном режиме справляется с ними с трудом и это несмотря на наличие припоя под крышкой. Причём если 8 ядер от АМД можно вполне успешно разгонять используя лучшие воздушные кулеры, то перед 8 ядрами от Интел пасуют и они. В итоге жидкостное охлаждение как никогда актуально для высокопроизводительных систем. Есть же большой ассортимент необслуживаемых жидкостных систем, скажете вы – и будете правы, производители балуют энтузиастов вариантами на любой вкус и размер корпуса, но при таком раскладе, после траты внушительных средств, у вас в корпусе останется без должного охлаждения самый горячий элемент современных игровых систем, да и самый шумный в придачу — видеокарта. Выход – сборная, «кастомная» система жидкостного охлаждения (СЖО). Расскажу о своём опыте по сборке такой системы и попытке минимизировать затраты.

В первую очередь хорошо бы определиться, в каком корпусе будет собираться система – от этого зависит выбор радиаторов и общий план расположения. Изначально СЖО было установлено в корпус Fractal Design Define R5, но после благополучно переехало в новый Fractal Design Define S, размеры и устройство корпусов практически идентично, проблем с переездом не возникло.

Итак, корпус выбран, для максимально эффективного и тихого охлаждения рекомендую занять всю возможную площадь для радиаторов, не имею в виду, что надо устанавливать по 7 радиаторов, но минимум по две секции 120мм на охлаждаемый элемент (процессор, видеокарта) очень желательно. По изначальным прикидкам корпус должен вместить тонкий (30мм) радиатор размера 420мм в верхней части, и в передней части корпуса должно остаться место под помпу с резервуаром и толстый (60мм) радиатор размера 280мм. В двух словах об эффективном методе выбора радиаторов – выясняем наибольший влезающий по площади и уже потом, при наличии места, выбираем его толщину.

Сборка системы жидкостного охлаждения

У нас был выбор, собирать ли систему на жестких трубках или на шлангах (или скомбинировать оба варианта). В итоге мы выбрали более простой в реализации вариант, то есть использовали шланги.

На сайте компании Corsair есть конфигуратор, который облегчит подбор компонентов СЖО под имеющиеся комплектующие. У нас задача была противоположной, так как практически все компоненты СЖО уже были, но описать такой полезный инструмент все же стоит.

Таинство начинается с выбора корпуса:

Далее пользователь указывает материнскую плату (и опционально модель процессора) и видеокарту (и их число). В результате конфигуратор предлагает, какие компоненты Hydro X Series использовать и как их располагать.

Детали конфигурации выясняются после рада уточняющих вопросов, типа выбора цвета компонентов, количества радиаторов, выбора вентиляторов, модели помпы, типа магистрали (жесткие трубки или шланги), цвета ОЖ, контроллера, выбора дополнительных аксессуаров.

Окончательная конфигурация получает свой уникальный код, чтобы в дальнейшем пользователь мог еще поработать над ней.

Для данной конфигурации доступны для загрузки PDF-файлы. Один со списком компонентов и изображением, показывающим расположение основных компонентов в корпусе. Второй содержит более подробную схему возможного размещения компонентов СЖО и вентиляторов в выбранном корпусе. Примеры файлов доступны по ссылкам.

Разумеется, все эти схемы и списки, полученные в результате работы с конфигуратором, стоит рассматривать лишь как рекомендации, но они облегчат понимание вопроса новичкам, и даже опытные пользователи смогут их использовать в качестве отправной точки.

Для сбора кастомной СЖО мы использовали корпус Corsair Crystal Series 680X RGB. Процессор и материнская плата использовались такие же, что и при тестировании процессорных охладителей, а именно Intel Core i9-7980XE и ASRock X299 Taichi. Видеокарта — Nvidia GeForce RTX 2080 Ti. Дополнительно к трем вентиляторам с подсветкой Corsair LL120 RGB, которые входят в комплект поставки этого корпуса, мы задействовали вентиляторы Corsair QL120 RGB, подключенные к своему контроллеру (он управляет только подсветкой). Вентилятор Corsair SP120 из комплекта поставки корпуса мы не использовали.

Три вентилятора Corsair LL120 RGB подключались через разветвитель к одному каналу контроллера Corsair Lighting Node Pro. Этот контроллер также управляет только подсветкой. Водоблок видеокарты, помпа и водоблок центрального процессора подключались последовательно (в данном порядке) к второму каналу контроллера Corsair Lighting Node Pro. Регулировка скорости вращения помпы и вентиляторов, которые были подключены к разъемам для вентиляторов на материнской плате (в случае помпы — подавался только управляющий сигнал, но не питание), осуществлялась с помощью ШИМ, КЗ для которой выставлялся в программе SpeedFan. Для управления подсветкой штатных вентиляторов и компонентов СЖО применялась программа Corsair iCUE. Отметим, что на один канал контроллера Corsair Lighting Node Pro можно зарегистрировать вентиляторы только одного типа, поэтому для управления подсветкой двух вентиляторов Corsair QL120 RGB мы подключили их к своему контроллеру.

Радиатор СЖО был закреплен на передней съемной панели изнутри, а между ним передней панелью были установлены три вентилятора Corsair LL120 RGB, работающие на вдув внутрь корпуса. Один вентилятор (второй рядом уже не поместился) Corsair QL120 RGB был закреплен на съемной верхней панели и работал на выдув вверх из корпуса. Второй вентилятор Corsair QL120 RGB был установлен на задней стенке корпуса и также работал на выдув. Таким образом, в корпусе было установлено пять вентиляторов, не считая вентилятора в блоке питания. Помпа была закреплена на передней стенке корпуса в отсеке за материнской платой. Работающая система в сборе показана на видео ниже:


Недостатки

Сложность. Как уже было упомянуто, в части установки и обслуживания СВО намного сложнее воздушных кулеров и требуют больше времени. Вам придется учесть и проработать множество различных нюансов.

Дороговизна. Любой модульный жидкостный кулер будет стоить существенно дороже, чем воздушный. Это обусловлено прежде всего тем, что он состоит из намного большего число отдельных компонентов.

Техническое обслуживание. Обслуживание модульного контура СВО является намного более трудоемким и требует намного больше времени и терпения, чем обслуживание воздушного кулера.

Вероятность протечки. Этот пункт специально помещен в конец списка. Потому что если вы будете следовать указаниям инструкций и не будете делать явных глупостей, вероятность протечки будет стремиться к нулю. Первое, что думают люди, когда они задумываются об установке СВО: ‘А что, если я вдруг залью свой компьютер?’ Мы еще будем говорить об этом в дальнейших разделах, но правильно собранный (из качественных компонентов) контур СВО практически не представляет опасности для остального оборудования, даже при возникновении течей.

В зависимости от того, как вы будете собирать свой кулер, вы сможете воспользоваться какими-то или даже всеми преимуществами СВО или столкнуться с большинством, если не со всеми их недостатками.

Обратите внимание: компьютер с водяным охлаждением – это решение не для всех, а, как правило, для энтузиастов, которые желают получить перечисленные выше преимущества или занимаются исследованием возможностей модульных СВО. Поэтому я настоятельно рекомендую вам, прежде чем начинать собирать кулер, прочитать эту статью до конца. И затем уже отталкиваться от полученных знаний. За испорченное в результате неправильного применения этих знаний оборудование и последующие негативные эмоции редакция сайта ответственности не несет.

Обеспечение радиатора питанием

Стандартный вентилятор питается от напряжения 12 В. При этом он достигает указанной в спецификации скорости вращения и, таким образом, максимальной громкости. В системе водного охлаждения часть тепла поглощает кулер радиатора, поэтому 12-
вольтное питание для пары наших вентиляторов, пожалуй, не понадобится. В большинстве случаев достаточно 5-7 В — это позволит сделать систему практически бесшумной. Для этого соедините разъемы питания обоих вентиляторов и подключите к прилагающемуся адаптеру, который позже будет подключен к блоку питания.

Обеспечение радиатора питанием

Готовые системы или самостоятельная сборка

Системы водяного охлаждения, среди прочих признаков, также подразделяются по варианту сборки и комплектации на:

  • Готовые системы, в которых все компоненты СВО покупаются в одном наборе, с инструкцией по установке
  • Самодельные системы, которые собираются самостоятельно из отдельных компонентов

Обычно, многими энтузиастами считается, что все «системы из коробки» показывают низкую производительность, но это далеко не так — комплекты водяного охлаждения от таких известных марок, как Swiftech, Danger Dan, Koolance и Alphacool демонстрируют вполне приличную производительность и про них уж точно нельзя сказать, что они слабые, да и данные фирмы являются зарекомендовавшими себя производителями высокопроизводительных компонентов систем водяного охлаждения.

Готовая фирменная СВО Swiftech H20-220 Ultima XT

Среди плюсов готовых систем можно отметить удобство — вы покупаете сразу всё, что необходимо для установки водяного охлаждения в одном наборе, да и инструкция по сборке идет в комплекте. Кроме того, производители готовых систем водяного охлаждения, обычно, стараются предусмотреть все возможные ситуации, чтобы у пользователя, например, не возникло проблем с установкой и креплением компонентов. К минусам таких систем можно отнести то, что они не гибкие в плане конфигурации, к примеру, у производителя есть несколько вариантов готовых систем водяного охлаждения и изменить их комплектацию, чтобы подобрать комплектующие лучше подходящие именно вам, вы, обычно, не имеете возможности.

Покупая же комплектующие водяного охлаждения по отдельности вы можете подобрать именно те компоненты, которые, по вашему мнению, лучше всего подойдут вам. Помимо этого, покупая систему из отдельных компонентов, иногда, можно сэкономить, но тут уже всё зависит от вас. Из минусов такого подхода можно выделить некоторую сложность в сборке таких систем для новичков, например, нам доводилось видеть случаи, когда люди, недостаточно разбирающиеся в теме, покупали не все необходимые компоненты и/или несовместимые между собой компоненты и попадали впросак (понимали что что-то здесь не так) только когда садились за сборку СВО.

Финишная прямая

Дело осталось за малым – установить все компоненты, «обвязать водой» и протестировать получившийся компьютер. Все началось с установки фитингов – красивые такие железки (в виде «ёлочек»), которые через специальные прокладки (и иногда, когда резьба фитинга очень длинная, через специальные спэйсеры) устанавливаются в соответствующее отверстие водоблока или резервуара – для затягивания мы использовали небольшой разводной ключ, но тут тоже важно не перестараться.

image

Помимо фитингов, в два отверстия водоблока видеокарты были установлены специальные заглушки:

image

После этого мы продумали маршрут, по которому будет идти вода. Правило простое – от менее нагретого к более. Соответственно, «выход» радиатора соединяется сперва с водоблоком материнской платы, из него выход на процессор, затем в видеокарту и уже потом обратно на вход в радиатор, остужаться. Так как вода одна на всех, то температура всех компонентов в результате будет примерно одинаковой – именно из этих соображений делают многоконтурные системы и именно по этой причине не имеет смысла подключать к одному контуру еще и всякие там жесткие диски, оперативку и т.д.

image

Роль шланга досталась красному Feser Tube (ПВХ, рабочая температура от -30 до +70°C, давление на разрыв 10МПа), для нарезки которого использовался специальный хищный инструмент.

image

image

Ровно отрезать шланг – может быть и не так сложно, но очень важно! Почти на все шланги были надеты специальные пружины против изгибов и изломов шланга (минимальный радиус петли шланга становится равным ~3.5см).

image

На каждый шланг (с обеих сторон) в области фитинга нужно установить по «хомуту» – мы использовали красивые Koolance Hose Clamp. Устанавливаются они с помощью обычных плоскогубцев (с грубой мужской силой), поэтому нужно действовать аккуратно, чтобы случайно не задеть чего-нибудь.

image

image

image

Пришло время поработать над соединением «внутреннего мира» с «внешним». Для того, чтобы иметь возможность снять радиатор-резервуар-помпу (например, для открытия корпуса или для транспортировки), мы поставили на трубки так называемые «быстросъемы» (быстросъемные клапаны), принцип действия которых до безобразия прост.

Когда мы поворачиваем соединение (как у BNC-коннекторов), отверстие в трубке закрывается-открывается, благодаря чему разобрать «водянку» можно меньше чем за минуту, без всяких луж и прочих последствий. Еще парочка дорогих, но прекрасно выглядящих железяк:

image

image

image

image

Вывод

При покупке кастомной СЖО из отдельных компонентов стоит учитывать на какие комплектующие будет устанавливаться водоблок, какой толщины и длины можно установить радиатор в корпусе и какую помпу выбрать.

Если вывести короткое резюме, то для тех, кто собирает водяное охлаждение впервые, идеальным вариантом будет контур на шлангах 10/16 мм, с помпой D5 с резервуаром, радиатором 3*120 толщиной 45 мм и прозрачной жидкостью.

Многих от покупки кастомного водяного охлаждения удерживает (кроме цены, конечно) сложность подбора комплектующих, и мы надеемся, что данный материал поможет разобраться как минимум с основными из них.

Adblock
detector