Эра квантовых вычислений началась: что означает успех эксперимента Google по достижению квантового превосходства

Квантовые компьютеры — для «чайников»

Объясняем на лампочках и котиках, что такое квантовый компьютер.

Осенью прошлого года компания Google заявила, что достигла квантового превосходства. Звучит как что-то сложное и не очень нужное простому пользователю? Не совсем так. Суть этой новости в том, что сотрудники Google с помощью специального квантового компьютера смогли решить задачу, с которой даже очень крутой суперкомпьютер за разумное время не справится. Впечатляет, не так ли?

К тому же это имеет прямое отношение к безопасности ваших данных, ведь многие защитные механизмы в цифровом мире основаны как раз на том, что их нельзя взломать за разумное время. Давайте разберемся, что это за квантовый компьютер такой и стоит ли опасаться, что киберпреступники начнут пользоваться им для взлома.

Зачем нужен квантовый компьютер?

До недавних пор все компьютеры на планете, от больших ЭВМ 1960-х до вашего айфона или таких, на первый взгляд, экзотических изобретений, как нейроморфные компьютеры или ДНК-компьютеры, работали по одним и тем же принципам. Их сформулировал Чарльз Бэббидж в 1830-е годы и систематизировал Алан Тьюринг в 1930-е.

В ходе компьютерной революции менялись только количественные показатели: увеличивались скорость, объем оперативной и физической памяти, количество процессоров.

Но квантовые вычисления — это нечто совершенно иное. Это первая компьютерная модель со времен Тьюринга, которая изменит принципиальные основы вычислительных алгоритмов, позволяя выполнять невероятно сложные для традиционных компьютеров задачи.

Самые ожидаемые результаты квантовых вычислений — это возможность симулировать процессы химии и квантовой физики, а также разрушить большую часть систем шифрования, которые сейчас обеспечивают защиту данных в интернете.

Демонстрация компанией Google способностей квантового компьютера стала критической вехой компьютерной революции.

Квантовый процессор – это ядро компьютера

Создание кубитов – сложная задача. Требуется низкотемпературная среда для поддержания стабильного состояния кубита в течение любого отрезка времени. Сверхпроводящие материалы, необходимые для создания кубита, должны быть охлаждены почти до абсолютного нуля (около минус 272 по Цельсию). Кубиты также должны быть защищены от фонового шума, чтобы уменьшить ошибки в вычислениях.

Внутренности квантового компьютера выглядят как роскошная золотая люстра. И да, многие комплектующие сделаны из настоящего золота. Это дорогущий холодильник, который используется для охлаждения квантовых чипов, чтобы компьютер мог создавать суперпозиции и запутывать кубиты, не теряя при этом никакой информации.

Основной цикл работы квантового компьютера на один кубит

Квантовый компьютер создаёт эти кубиты из любого материала, который обладает квантово-механическими свойствами, доступными для управления. Проекты квантовых вычислений создают кубиты различными способами, такими как зацикливание сверхпроводящего проводника, вращение электронов и захват ионов или импульсов фотонов. Эти кубиты существуют только при температурах близких к абсолютному нулю, создаваемых в холодильной установке.

Ошибки и их коррекция

Еще один бич квантовых процессоров. Если вы инвертируете кубит, с вероятностью в 2% операция закончится ошибкой. Если вы запутываете 2 кубита, вероятность ошибки достигает 8%. Возьмите число в 256 битов, захешируйте его на SHA-256, посчитайте количество операций, посчитайте вероятность выполнить ВСЕ эти операции безошибочно.

Математики предоставляют решение: коррекция ошибок. Алгоритмы есть. Реализация одного запутывания 2 логических кубитов требует 100.000 физических кубитов. Битко-капец наступит нескоро.

Как это связано с тем, с чем можно встретиться в реальной жизни?

Моделирование свойств химических веществ — в некотором смысле задача моделирования квантовых систем. Поэтому многие ученые надеются на то, что квантовые компьютеры упростят расчет свойств отдельных молекул (например, их спектров), а также поиск новых лекарств и материалов. Задачи оптимизации тоже часто связаны с перебором вариантов, например задача о коммивояжере. Постепенно появляются квантовые нейросети — с их помощью эксперты уже рассчитывали состояние молекулы водорода.

С квантовым компьютером связаны и некоторые опасения — ему по плечу оказываются многие задачи по расшифровке данных. К примеру, алгоритм шифрования RSA основан на том, что классический компьютер не может за разумное время разложить на простые множители число длиной несколько тысяч бит. Поэтому ключ дешифровки можно передавать в открытом виде. Если хакер хранит где-то набор открытых ключей и данных, зашифрованных с их помощью, то в будущем квантовый компьютер поможет ему расшифровать эти данные. Интересно, что из тех же соображений квантовый компьютер можно использовать для атаки на системы блокчейна, подобные биткоину.

Стоит отметить, что опасения, касающиеся алгоритма RSA, могут быть преждевременными. С ростом ключа будет расти и время вычисления для квантового компьютера — для ключа размером в терабит потребуется более 2 100 операций квантового компьютера. Практичность использования ключей настолько большого размера — отдельный вопрос. Тем не менее, многие компании уже начали разрабатывать методы постквантовой криптографии, одинаково сложные для дешифровки и классическим, и квантовым компьютером. Например, в некоторых версиях Chrome такие алгоритмы уже используются.

Чем квантовый компьютер превосходит обычный?

Принцип суперпозиции, при котором базовая единица информации может существовать более чем в одном состоянии одновременно, позволяет квантовому компьютеру хранить и обрабатывать одновременно гораздо больше данных, чем любому другому. При этом большими объемами данных можно управлять одновременно с помощью концепции, известной как квантовый параллелизм. Имея возможность вычислять и анализировать разные состояния данных одновременно, а не по одному, квантовые системы могут давать результаты с очень высокой скоростью.

Принцип суперпозиции, при котором базовая единица информации может существовать более чем в одном состоянии одновременно, позволяет квантовому компьютеру хранить и обрабатывать одновременно гораздо больше данных, чем любому другому.

Внутреннее устройство квантового компьютера

Квантовые системы можно было бы применить для того, чтобы решить проблему коммивояжера — задачу, которая требует нахождения кратчайшего маршрута между множеством городов, прежде чем вернуться домой. А решение этой задачи позволило бы более грамотно выстраивать навигацию и планировать маршруты по всему миру, что удешевило бы и упростило перемещения людей и грузов. Подобного рода исследования уже проводит Volkswagen совместно с D-Wave и Google.

Фото:Reuters

Квантовый компьютер способен обрабатывать огромные объемы финансовых, фармацевтических или климатологических данных, чтобы найти оптимальные решения проблем в этих отраслях.

Наконец, квантовые системы способны найти новые методы шифрования и легко взламывать даже самые сложные шифры.

IBM Quantum уже работает с клиентами над решением подобных проблем. Компания помогает разработать новое поколение электромобилей на технологии квантовых батарей с Daimler; технологию снижения выбросов углерода в атмосферу с помощью открытия экологичных материалов с ExxonMobil: ищет истоки зарождения Вселенной вместе с CERN. А Google использовала Sycamore для точного моделирования химической реакции.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector