Введение в теорию множеств

Операции над множествами

Рассмотрим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = Том,
Фред,
Макс,
Джорж >
Друзья Майкла = Лео,
Том,
Фред,
Эван >

Видим, что Том и Фред одновременно являются друзьями Джона и Майкла.

Говоря на языке множеств, элементы Том и Фред принадлежат как множеству друзей Джона, так и множеству друзей Майкла.

Зададим новое множество с названием «Общие друзья Джона и Майкла» и в качестве элементов добавим в него Тома и Фреда :

Общие друзья Джона и Майкла =

В данном случае множество «Общие друзья Джона и Майкла» является пересечением множеств друзей Джона и Майкла.

Пересечением двух (или нескольких) исходных множеств называется множество, которое состоит из элементов, принадлежащих каждому из исходных множеств.

В нашем случае элементы Том и Фред принадлежат каждому из исходных множеств, а именно: множеству друзей Джона и множеству друзей Майкла.

Обозначим множество друзей Джона через букву A , множество друзей Майкла — через букву B , а множество общих друзей Джона и Майкла обозначим через букву C :

Тогда пересечением множеств A и B будет множество C и записываться следующим образом:

Символ означает пересечение.

Говоря о множестве, обычно подразумевают элементы, принадлежащие этому множеству. Символ пересечения ∩ читается, как союз И. Тогда выражение A ∩ B = C можно прочитать следующим образом:

«Элементы, принадлежащие множеству A И множеству B, есть элементы, принадлежащие множеству C».

«Друзья, одновременно принадлежащие Джону И Майклу, есть общие друзья Джона и Майкла».

Теперь представим, что у Джона и Майкла нет общих друзей. Для удобства, как и прежде обозначим множество друзей Джона через букву A , а множество друзей Майкла через букву B

В этом случае говорят, что исходные множества не имеют общих элементов и пересечением таких множеств является пустое множество. Пустое множество обозначается символом ∅

Пример 2. Рассмотрим два множества: множество A , состоящее из чисел 1, 2, 3, 5, 7 и множество B, состоящее из чисел 1, 2, 3, 4, 6, 12, 18

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

Множество С является пересечением множеств A и B , поскольку элементы множества C одновременно принадлежат множеству A и множеству B

Пример 3. Рассмотрим два множества: множество A, состоящее из чисел 1, 5, 7, 9 и множество B , состоящее из чисел 1, 4, 5, 7

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

Множество С является пересечением множеств A и B , поскольку элементы множества C одновременно принадлежат множеству A и множеству B.

Пример 4. Найти пересечение следующих множеств:

Пересечением множеств A , B и C будет множество, состоящее из элементов, принадлежащих каждому из множеств A , B и C . Этими элементами являются числа 3 и 9.

Зададим новое множество D и добавим в него элементы 3 и 9. Затем с помощью символа пересечения запишем, что пересечением множеств A, B и C является множество D

Чтобы найти пересечение, вовсе необязательно задавать множества с помощью букв. Если элементов мало, то множество можно задать прямым перечислением элементов.

К примеру, пусть первое множество состоит из элементов 1, 3, 5, а второе из элементов 2, 3, 5 . Пересечением в данном случае является множество, состоящее из элементов 3 и 5 . Чтобы записать пересечение, можно воспользоваться прямым перечислением:

Числовые промежутки, которые мы рассмотрели в предыдущих уроках, тоже являются множествами. Элементами таких множеств являются числа, входящие в числовой промежуток.

Например, отрезок [2; 6] можно понимать, как множество всех чисел от 2 до 6. Для наглядности можно перечислить все целые числа, принадлежащие данному отрезку:

Следует иметь ввиду, что мы перечислили только целые числа. Отрезку [2; 6] также принадлежат и другие числа, не являющиеся целыми, например, десятичные дроби. Десятичные дроби располагаются между целыми числами, но их количество настолько велико, что перечислить их не представляется возможным.

Еще пример. Интервал (2; 6) можно понимать, как множество всех чисел от 2 до 6, кроме чисел 2 и 6. Ранее мы говорили, что интервал это такой числовой промежуток, границы которого не принадлежат ему. Для наглядности можно перечислить все целые числа, принадлежащие интервалу (2; 6) :

Поскольку числовые промежутки являются множествами, то мы можем находить пересечения между различными числовыми промежутками. Рассмотрим несколько примеров.

Пример 5. Даны два числовых промежутка: [2; 6] и [4; 8] . Найти их пересечение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [2; 6] и [4; 8] :

Видно, что числа 4, 5, 6 принадлежат как первому промежутку [2; 6] , так и второму [4; 8] .

Тогда пересечением числовых промежутков [2; 6] и [4; 8] будет числовой промежуток [4; 6]

Изобразим промежутки [2; 6] и [4; 8] на координатной прямой. На верхней области отметим числовой промежуток [2; 6] , на нижней — промежуток [4; 8]

Видно, что числа, принадлежащие промежутку [4; 6] , принадлежат как промежутку [2; 6] , так и промежутку [4; 8] . Можно также заметить, что штрихи, входящие в промежутки [2; 6] и [4; 8] пересекаются в промежутке [4; 6] . В такой ситуации, когда перед глазами есть координатная прямая, понятие пересечения множеств можно понимать в прямом смысле, что очень удобно.

Пример 6. Найти пересечение числовых промежутков [−2; 3] и [4; 7]

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [−2; 3] и [4; 7] :

−2, −1, 0, 1, 2, 3 ∈ [−2; 3]

Видно, что числовые промежутки [−2; 3] и [4; 7] не имеют общих чисел. Поэтому их пересечением будет пустое множество:

Если изобразить числовые промежутки [−2; 3] и [4; 7] на координатной прямой, то можно увидеть, что они нигде не пересекаются:

-2 3 и 4 7 координатная прямая

Пример 7. Дано множество из одного элемента < 2 >. Найти его пересечение с промежутком (−3; 4)

Множество, состоящее из одного элемента < 2 >, на координатной прямой изображается в виде закрашенного кружка, а числовой промежуток (−3; 4) это интервал, границы которого не принадлежат ему. Значит границы −3 и 4 будут изображаться в виде пустых кружков:

числовой промежуток -3 4

Пересечением множества < 2 >и числового промежутка (−3; 4) будет множество, состоящее из одного элемента < 2 >, поскольку элемент 2 принадлежит как множеству < 2 >, так и числовому промежутку (−3; 4)

На самом деле мы уже занимались пересечением числовых промежутков, когда решали системы линейных неравенств. Вспомните, как мы решали их. Сначала находили множество решений первого неравенства, затем множество решений второго. Затем находили множество решений, которые удовлетворяют обоим неравенствам.

По сути, множество решений, удовлетворяющих обоим неравенствам, является пересечением множеств решений первого и второго неравенства. Роль этих множеств берут на себя числовые промежутки.

Например, чтобы решить систему неравенств , мы должны сначала найти множества решений каждого неравенства, затем найти пересечение этих множеств.

В данном примере решением первого неравенства x ≥ 3 является множество всех чисел, которые больше 3 (включая само число 3). Иначе говоря, решением неравенства является числовой промежуток [3; +∞)

Решением второго неравенства x ≤ 6 является множество всех чисел, которые меньше 6 (включая само число 6). Иначе говоря, решением неравенства является числовой промежуток (−∞; 6]

А общим решением системы будет пересечение множеств решений первого и второго неравенства, то есть пересечение числовых промежутков [3; +∞) и (−∞; 6]

Если мы изобразим множество решений системы на координатной прямой, то увидим, что эти решения принадлежат промежутку [3; 6] , который в свою очередь является пересечением промежутков [3; +∞) и (−∞; 6]

числовой промежуток от 3 до 6

Поэтому в качестве ответа мы указывали, что значения переменной x принадлежат числовому промежутку [3; 6], то есть пересечению множеств решений первого и второго неравенства

Пример 2. Решить неравенство

Все неравенства, входящие в систему уже решены. Нужно только указать те решения, которые являются общими для всех неравенств.

Решением первого неравенства является числовой промежуток (−∞; −1) .

Решением второго неравенства является числовой промежуток (−∞; −5) .

Решением третьего неравенства является числовой промежуток (−∞; 4) .

Решением системы будет пересечение числовых промежутков (−∞; −1), (−∞; −5) и (−∞; 4) . В данном случае этим пересечением является промежуток (−∞; −5) .

-5 -1 i 4 на кп

На рисунке представлены числовые промежутки и неравенства, которыми эти числовые промежутки заданы. Видно, что числа, принадлежащие промежутку (−∞; −5) , одновременно принадлежат всем исходным промежуткам.

Запишем ответ к системе с помощью числового промежутка:

Пример 3. Решить неравенство

Решением первого неравенства y > 7 является числовой промежуток (7; +∞) .

Решением системы будет пересечение числовых промежутков (7; +∞) и (−∞; 4) .

В данном случае пересечением числовых промежутков (7; +∞) и (−∞; 4) является пустое множество, поскольку эти числовые промежутки не имеют общих элементов:

Если изобразить числовые промежутки (7; +∞) и (−∞; 4) на координатной прямой, то можно увидеть, что они нигде не пересекаются:

y b 7 i y m 4 координатная прямая

Часть вторая. Краткий обзор операций, обозначений и диаграмм Венна.

Как сказано в предыдущей части, одно из фундаментальных преимуществ теории множеств произрастает не из какой-то конкретной теории, а из созданного ею языка. Именно поэтому основная часть этого раздела будет посвящена обозначениям, операциям и визуальному представлению теории множеств. Давайте начнём с объяснения базовых символов обозначения множества — соответствующих ему элементов. В таблице ниже показан пример одного множества A с тремя элементами:

A — это множество с элементами «1», «2» и «3»

«1» — элемент множества A

В первой строке показано множество A с тремя отдельными элементами (A = ); во второй строке показан правильный способ обозначения отдельного конкретного элемента 1, принадлежащего множеству A. Пока всё довольно просто, но теория множеств становится существенно интереснее, когда мы добавляем второе множество — начинается путешествие по стандартным операциям.

Для показанной выше таблицы давайте введём два дополнительных множества B и C, содержащие следующие элементы: B = , C = . Хоть мы и создали три множества (A,B и C), в показанных ниже примерах операции выполняются одновременно только с двумя множествами, поэтому внимательно следите за тем, какие множества указаны в самом левом столбце. В показанной ниже таблице представлено пять самых распространённых операндов множеств:

Операции: пересечение (intersection) — множество элементов, принадлежащих множеству A и множеству B;

объединение (union) — множество элементов, принадлежащих множеству A или множеству B;

подмножество (subset) — C является подмножеством A, множество C включено во множество A;

собственное (истинное) подмножество — C является подмножеством A, но C не равно A;

относительное дополнение (relative complement) — множество элементов, принадлежащих к A и не к B.

Вот и они, самые распространённые операции в теории множеств; они довольно популярны и в областях за пределами чистой математики. На самом деле, высока вероятность того, что вы уже видели подобные типы операций в прошлом, хоть и не совсем с такой терминологией, и даже пользовались ими. Хорошая иллюстрация: попросите любого студента описать диаграмму Венна из двух пересекающихся групп, и он интуитивно придёт к правильному результату.

Ещё раз взгляните на последнюю строку, относительное дополнение — какое необычное сочетание слов, правда? Относительное к чему? Если относительное дополнение A — B определяется как A и не B, то как нам обозначить всё, что не является B?

Универсальное множество — пустое множество

Оказывается, если мы хотим получить значимый ответ, то для начала нужно предоставить генеральной совокупности нашей задачи множеств некий контекст. Он часто явным образом задаётся в начале задачи, когда допустимые элементы множества ограничиваются некоторым фиксированным классом объектов, в котором существует универсальное множество, являющееся общим множеством, содержащим все элементы для этой конкретной задачи. Например, если мы хотели бы работать со множествами только из букв английского алфавита, то наше универсальное множество U состояло бы из 26 букв алфавита.

Для любого подмножества A множества U дополнение множества A (обозначаемое A′ или UA) определяется как множество всех элементов в генеральной совокупности U, которое не находится в A. Если вернуться к поставленному выше вопросу, то дополнением множества B является всё в пределах универсального множества, что не принадлежит B, в том числе и A.

Прежде чем мы двинемся дальше, надо упомянуть ещё одно принципиальное множество, которое достаточно важно для базового понимания: нулевое или пустое множество. Учтите, что существует единственное пустое множество, поэтому никогда не говорят «пустые множества». Хотя мы не будем рассматривать в этой статье эквивалентность, основная теория гласит, что два множества эквивалентны, если они имеют одинаковые элементы; следовательно, может быть только одно множество без элементов. Поэтому существует единственное пустое множество.

Диаграммы Венна и остальное

Диаграммы Венна, официально изобретённые в 1880 году Джоном Венном, являются именно тем, что вы и представляете, хотя их научное определение звучит примерно так:

Ниже показано изображение шести самых распространённых диаграмм Венна, и почти во всех показаны недавно изученные нами операнды:

Объединение (union), пересечение (intersection), относительное дополнение (relative complement), симметрическая разность (symmetric difference), собственное множество (proper subset), абсолютное дополнение (universal дополнение).

Начав с очень простых обозначений множества и его элементов, мы узнали затем о базовых операциях, позволивших нарисовать эту визуальную подсказку. Мы рассмотрели все операции, за исключением симметрической разности (внизу слева). Чтобы не оставлять пробелов в знаниях, скажем, что симметрическая разность, также называемая дизъюнктивным объединением — это просто множество элементов, которые находятся в любом из множеств, но не входят в их пересечение.

Закончим мы этот раздел введением понятия мощности (кардинального числа). Мощность множества, обозначаемая символом абсолютного значения — это просто количество уникальных элементов, содержащихся в определённом множестве. Для показанного выше примера мощность трёх множеств равна: |A| = 3, |B| =6, |C| = 2.

Прежде чем двигаться дальше, дам вам пищу для размышлений — какова связь между мощностью и количеством возможных подмножеств?

image

Нарисуй диаграммы множеств. Запиши, какое из них является подмножеством другого.

  • а) С — множество учеников школы, В — множество отличников этой школы.
  • б) D — множество девочек класса, Е — множество всех учеников этого класса.
  • в) К — множество рыб, О — множество окуней.
  • г) N — множество натуральных чисел, М — множество чётных чисел.
  • а) Какое из множеств М = и К = является подмножеством другого множества? Докажи.
  • б) Нарисуй диаграмму Венна множеств М и К и отметь на ней элементы этих множеств.

    Решение:
  • а) KM. M — множество фигур, букв и знаков, b — пиринадлежит множеству букв, — принадлежит множеству фигур.

Упражнения

1. Найдите АВ, если

а) А = (–3; 7), В = (1; 8);

б) А = [0; 5], B = [5; 8];

в) А = (–∞; +∞), В = (–1; 9);

г) А — множество простых чисел, В — множество положительных четных чисел;

д) А — множество всех прямоугольников, В — множество всех ромбов;

з) А — множество чисел, кратных 18, В — множество чисел, кратных 24;

2. Множество А состоит из целых чисел, делящихся на 4, множество В — из целых чисел, оканчивающихся нулем и множество С — из целых чисел, делящихся на 75. Из каких чисел состоит множество АВС.

3. Определите, какие из предложенных вариантов могут изображать пересечение множеств решений двух квадратных нера- венств? В случае положительного ответа приведите примеры та- ких неравенств.

а) б) в) г) д)

4. Изобразите с помощью кругов Эйлера–Венна пересечение множеств А и В для всевозможных случаев их взаимного расположения.

Отношения между множествами

Отношения могут связывать множества объектов.

Для удобного представления таких отношений используют диаграммы Эйлера-Венна.

Определение: Если множества А и В имеют общие элементы, то такие множества пересекаются.

Пусть А – множество интернет магазинов, В – множество всех магазинов одежды. В пересечение этих множеств попадают все интернет магазины одежды.

Определение: Если множества не имеют общих элементов, то такие множества не пересекаются.

Пусть А – множество паровых двигателей, В – множество книг по биологии. Эти множества не имеют общих элементов.

Определение: Если каждый элемент В входит в множество А, то множество В – подмножество А.

Пусть А – множество литературных персонажей, В – множество героев романа Гарри Поттер. Множество героев романа является подмножеством множества литературных персонажей.

Определение: Если каждый элемент множества В является элементом множества А и, на оборот, то множества А и В равны.

Пусть А – множество равносторонних прямоугольников, В – множество квадратов. Эти множества являются равными.

Литература:
1. Информатика: учебник для 6 класса / Л.Л. Босова, А.Ю. Босова. — М.: БИНОМ.Лаборатория знаний, 2016. — 244 с.

Множество. Примеры множеств

Множество – это фундаментальное понятие не только математики, но и всего окружающего мира. Возьмите прямо сейчас в руку любой предмет. Вот вам и множество, состоящее из одного элемента.

В широком смысле, множество – это совокупность объектов (элементов), которые понимаются как единое целое (по тем или иным признакам, критериям или обстоятельствам). Причём, это не только материальные объекты, но и буквы, цифры, теоремы, мысли, эмоции и т.д.

Обычно множества обозначаются большими латинскими буквами (как вариант, с подстрочными индексами: и т.п.), а его элементы записываются в фигурных скобках, например:

– множество букв русского алфавита;
– множество натуральных чисел;

ну что же, пришла пора немного познакомиться:
– множество студентов в 1-м ряду

… я рад видеть ваши серьёзные и сосредоточенные лица =)

Множества и являются конечными (состоящими из конечного числа элементов), а множество – это пример бесконечного множества. Кроме того, в теории и на практике рассматривается так называемое пустое множество:

– множество, в котором нет ни одного элемента.

Пример вам хорошо известен – множество на экзамене частенько бывает пусто =)

Принадлежность элемента множеству записывается значком , например:

– буква «бэ» принадлежит множеству букв русского алфавита;
– буква «бета» не принадлежит множеству букв русского алфавита;
– число 5 принадлежит множеству натуральных чисел;
– а вот число 5,5 – уже нет;
– Вольдемар не сидит в первом ряду (и тем более, не принадлежит множеству или =)).

В абстрактной и не очень алгебре элементы множества обозначают маленькими латинскими буквами и, соответственно, факт принадлежности оформляется в следующем стиле:

– элемент принадлежит множеству .

Вышеприведённые множества записаны прямым перечислением элементов, но это не единственный способ. Многие множества удобно определять с помощью некоторого признака (ов), который присущ всем его элементам. Например:

– множество всех натуральных чисел, меньших ста.

Запомните: длинная вертикальная палка выражает словесный оборот «которые», «таких, что». Довольно часто вместо неё используется двоеточие: – давайте прочитаем запись более формально: «множество элементов , принадлежащих множеству натуральных чисел, таких, что ». Молодцы!

Данное множество можно записать и прямым перечислением:

Ещё примеры:
– и если и студентов в 1-м ряду достаточно много, то такая запись намного удобнее, нежели их прямое перечисление.

– множество чисел, принадлежащих отрезку . Обратите внимание, что здесь подразумевается множество действительных чисел (о них позже), которые перечислить через запятую уже невозможно.

Следует отметить, что элементы множества не обязаны быть «однородными» или логически взаимосвязанными. Возьмите большой пакет и начните наобум складывать в него различные предметы. В этом нет никакой закономерности, но, тем не менее, речь идёт о множестве предметов. Образно говоря, множество – это и есть обособленный «пакет», в котором «волею судьбы» оказалась некоторая совокупность объектов.

Подмножества

Практически всё понятно из самого названия: множество является подмножеством множества , если каждый элемент множества принадлежит множеству . Иными словами, множество содержится во множестве :

Значок называют значком включения.

Вернёмся к примеру, в котором – это множество букв русского алфавита. Обозначим через – множество его гласных букв. Тогда:

Также можно выделить подмножество согласных букв и вообще – произвольное подмножество, состоящее из любого количества случайно (или неслучайно) взятых кириллических букв. В частности, любая буква кириллицы является подмножеством множества .

Отношения между подмножествами удобно изображать с помощью условной геометрической схемы, которая называется кругами Эйлера.

Пусть – множество студентов в 1-м ряду, – множество студентов группы, – множество студентов университета. Тогда отношение включений можно изобразить следующим образом:

Множество студентов другого ВУЗа следует изобразить кругом, который не пересекает внешний круг; множество студентов страны – кругом, который содержит в себе оба этих круга, и т.д.

Типичный пример включений мы наблюдаем при рассмотрении числовых множеств. Повторим школьный материал, который важно держать на заметке и при изучении высшей математики:

Числовые множества

Как известно, исторически первыми появились натуральные числа, предназначенные для подсчёта материальных объектов (людей, кур, овец, монет и т.д.). Это множество уже встретилось в статье, единственное, мы сейчас чуть-чуть модифицируем его обозначение. Дело в том, что числовые множества принято обозначать жирными, стилизованными или утолщёнными буквами. Мне удобнее использовать жирный шрифт:

Иногда к множеству натуральных чисел относят ноль.

Если к множеству присоединить те же числа с противоположным знаком и ноль, то получится множество целых чисел:

, рационализаторы и лентяи записывают его элементы со значками «плюс минус»:))

Совершенно понятно, что множество натуральных чисел является подмножеством множества целых чисел:
– поскольку каждый элемент множества принадлежит множеству . Таким образом, любое натуральное число можно смело назвать и целым числом.

Название множества тоже «говорящее»: целые числа – это значит, никаких дробей.

И, коль скоро, целые, то сразу же вспомним важные признаки их делимости на 2, 3, 4, 5 и 10, которые будут требоваться в практических вычислениях чуть ли не каждый день:

Целое число делится на 2 без остатка, если оно заканчивается на 0, 2, 4, 6 или 8 (т.е. любой чётной цифрой). Например, числа:
400, -1502, -24, 66996, 818 – делятся на 2 без остатка.

И давайте тут же разберём «родственный» признак: целое число делится на 4, если число, составленное из двух его последних цифр (в порядке их следования) делится на 4.

400 – делится на 4 (т.к. 00 (ноль) делится на 4);
-1502 – не делится на 4 (т.к. 02 (двойка) не делится на 4);
-24, понятно, делится на 4;
66996 – делится на 4 (т.к. 96 делится на 4);
818 – не делится на 4 (т.к. 18 не делится на 4).

Самостоятельно проведите несложное обоснование данного факта.

С делимость на 3 чуть сложнее: целое число делится на 3 без остатка, если сумма входящих в него цифр делится на 3.

Проверим, делится ли на 3 число 27901. Для этого просуммируем его цифры:
2 + 7 + 9 + 0 + 1 = 19 – не делится на 3
Вывод: 27901 не делится на 3.

Просуммируем цифры числа -825432:
8 + 2 + 5 + 4 + 3 + 2 = 24 – делится на 3
Вывод: число -825432 делится на 3

Целое число делится на 5, если оно заканчивается пятёркой либо нулём:
775, -2390 – делятся на 5

Целое число делится на 10, если оно заканчивается на ноль:
798400 – делится на 10 (и, очевидно, на 100). Ну и, наверное, все помнят – для того, чтобы разделить на 10, нужно просто убрать один ноль: 79840

Также существуют признаки делимости на 6, 8, 9, 11 и т.д., но практического толку от них практически никакого =)

Следует отметить, что перечисленные признаки (казалось бы, такие простые) строго доказываются в теории чисел. Этот раздел алгебры вообще достаточно интересен, однако его теоремы… прямо современная китайская казнь =) А Вольдемару за последней партой и того хватило…, но ничего страшного, скоро мы займёмся живительными физическими упражнениями =)

Следующим числовым множеством идёт множество рациональных чисел:
– то есть, любое рациональное число представимо в виде дроби с целым числителем и натуральным знаменателем.

Очевидно, что множество целых чисел является подмножеством множества рациональных чисел:

И в самом деле – ведь любое целое число можно представить в виде рациональной дроби , например: и т.д. Таким образом, целое число можно совершенно законно назвать и рациональным числом.

Характерным «опознавательным» признаком рационального числа является то обстоятельство, что при делении числителя на знаменатель получается либо
– целое число,

либо
конечная десятичная дробь,

либо
– бесконечная периодическая десятичная дробь (повтор может начаться не сразу).

Полюбуйтесь делением и постарайтесь выполнять это действие как можно реже! В организационной статье Высшая математика для чайников и на других уроках я неоднократно повторял, повторяю, и буду повторять эту мантру:

В высшей математике все действия стремимся выполнять в обыкновенных (правильных и неправильных) дробях

Согласитесь, что иметь дело с дробью значительно удобнее, чем с десятичным числом 0,375 (не говоря уже о бесконечных дробях).

Едем дальше. Помимо рациональных существует множество иррациональных чисел, каждое из которых представимо в виде бесконечной НЕпериодической десятичной дроби. Иными словами, в «бесконечных хвостах» иррациональных чисел нет никакой закономерности:
(«год рождения Льва Толстого» дважды)
и т.д.

О знаменитых константах «пи» и «е» информации предостаточно, поэтому на них я не останавливаюсь.

Объединение рациональных и иррациональных чисел образует множество действительных (вещественных) чисел:

– значок объединения множеств.

Числовая прямая – это геометрическая интерпретация множества действительных чисел

Геометрическая интерпретация множества вам хорошо знакома – это числовая прямая:

Каждому действительному числу соответствует определённая точка числовой прямой, и наоборот – каждой точке числовой прямой обязательно соответствует некоторое действительное число. По существу, сейчас я сформулировал свойство непрерывности действительных чисел, которое хоть и кажется очевидным, но строго доказывается в курсе математического анализа.

Числовую прямую также обозначают бесконечным интервалом , а запись или эквивалентная ей запись символизирует тот факт, что принадлежит множеству действительных чисел (или попросту «икс» – действительное число).

С вложениями всё прозрачно: множество рациональных чисел – это подмножество множества действительных чисел:
, таким образом, любое рациональное число можно смело назвать и действительным числом.

Множество иррациональных чисел – это тоже подмножество действительных чисел:

При этом подмножества и не пересекаются – то есть ни одно иррациональное число невозможно представить в виде рациональной дроби.

Существуют ли какие-нибудь другие числовые системы? Существуют! Это, например, комплексные числа, с которыми я рекомендую ознакомиться буквально в ближайшие дни или даже часы.

Ну а пока мы переходим к изучению операций над множествами, дух которых уже материализовался в конце этого параграфа:

Adblock
detector