Урок 16Представление нечисловой информации в компьютере

Принципы представления данных и команд в компьютере

В настоящее время, в веке информационных технологий, когда потоки информации достигают предела плотности трафика каналов передачи, наряду с задачами обработки информации, возникают наиболее важные задачи ее упорядочивания, хранения и оперативности доступа к ней.

Именно поэтому понимание принципов построения и функционирования, а также грамотное создание и работа с различными структурами хранения данных (файлами, базами данных, файловыми системами), является одним из главных аспектов при подготовке специалистов. Изучение данных вопросов и закрепление практических навыков необходимо для взращивания уверенных пользователей ПК.

Люди имеют дело со многими видами информации. Услышав прогноз погоды, можно записать его в компьютер, чтобы затем воспользоваться им. В компьютер можно поместить фотографию своего друга или видеосъемку о том, как вы провели каникулы. Но ввести в компьютер вкус мороженого или мягкость покрывала никак нельзя.

Компьютер — это электронная машина, которая работает с сигналами. Компьютер может работать только с такой информацией, которую можно превратить в сигналы. Если бы люди умели превращать в сигналы вкус или запах, то компьютер мог бы работать и с такой информацией. У компьютера, очень хорошо, получается, работать с числами. Он может делать с ними все, что угодно. Все числа в компьютере закодированы «двоичным кодом», то есть, представлены с помощью всего двух символов 1 и 0, которые легко представляются сигналами. Вся информация, с которой работает компьютер, кодируется числами. Независимо от того, графическая, текстовая или звуковая эта информация, что бы ее мог обрабатывать центральный процессор она должна тем или иным образом быть представлена числами.

Средства и технологии обработки звуковой информации

Так как компьютер работает с числами, звуки и музыка должны быть представлены в числовом виде, или, как принято говорить, закодированы. Произвольная аудиоинформация при кодировании занимает много места, поэтому часто используют сжатые аудиоформаты. Музыка занимает меньше места, так как хорошо формализуется – ее можно записать с помощью нот.

Звук представляет собой волну, распространяющуюся в атмосфере, и воспринимаемую человеком с помощью органов слуха. Громкость звука – это его кажущаяся сила. Измеряется громкость в децибелах (дБ). Громкость обычного разговора около 50 дБ, шум на улице часто превышает 70 дБ, а громкость взлетающего самолета составляет 120 дБ. Порог чувствительности человеческого уха около 20 дБ.

Характеризуется звуковая волна изменением во времени частоты и амплитуды сигнала. Графически звуковая волна описывается кривой, задающей зависимость амплитуды от времени. Частота основных колебаний определяет высоту звука. Но звуки одной частоты могут иметь разный тембр.

Чтобы закодировать звук, необходимо измерять амплитуду сигнала через определенные промежутки времени. На каждом временном отрезке определяется средняя амплитуда сигнала. Графически такое преобразование описывается множеством столбиков.

При восстановлении исходной кривой ее вид будет искажен. Искажения тем больше, чем больше ширина столбиков, то есть чем реже определяется текущая амплитуда. Чем промежутки времени меньше, тем выше будет качество закодированного звука. Частота, с которой определяется амплитуда сигнала, называется частотой дискретизации.

Амплитуда сигнала, определенная в каждый момент времени, также должна быть представлена в числовом виде. В простейшем случае можно использовать один бит – есть звук или его нет. Но на практике такое кодирование не имеет смысла. Минимально для кодирования амплитуды сигнала отводятся восемь бит – один байт, что позволяет описать двести пятьдесят шесть уровней громкости. Качество звука при этом получается не слишком высокое. Если и частота дискретизации невелика, то при воспроизведении будут присутствовать сильные искажения. Значительно лучшее качество получается при использовании двух байт, что позволяет задать более шестидесяти пяти тысяч разных значений амплитуды. В большинстве случаев двух байт достаточно для получения высококачественной записи звука, хотя иногда применяют 24 бита – три байта для кодирования амплитуды сигнала.

Для кодирования звуков следует использовать частоту вдвое большую, чем частота кодируемого звука. Объяснение этому довольно простое. Звуковая волна состоит из двух полупериодов: положительного и отрицательного. Поэтому для ее имитации необходимо иметь хотя бы по одной выборке на каждом из полупериодов. Так как человек воспринимает звуки в диапазоне частот от 20 до 20000 Гц, то для качественного кодирования необходимо использовать частоту вдвое большую, чем 20000, то есть 40000 Гц. Тогда сохраненные выборки позволят воспроизводить звуковую волну внутри диапазона, воспринимаемого человеческим ухом. Для качественного кодирования звука принято иметь некоторый запас, поэтому при цифровой звукозаписи используется частота дискретизации 44100 Гц и 48000 Гц. Это означает, что за каждую секунду звукозаписи в цифровом виде записывается более 44000 единиц информации, последовательность которых моделирует звук длительностью в одну секунду.

Для того чтобы записать стереозвук, следует одновременно кодировать два независимых канала звука. При этом чтобы получить хорошее качество, нужно использовать два байта для кодирования и частоту дискретизации 44100 Гц для каждого из каналов. Именно так кодируется звук на компакт-дисках. При этом одна минута закодированного звука займет более 10 Мб. В некоторых случаях можно обойтись более низким качеством, сравнимым с качеством записи диктофона. Для того чтобы закодировать голос, не предъявляя повышенных требований к качеству звучания, можно использовать один байт при кодировании и один монофонический канал. Частоту дискретизации также можно понизить. Чтобы разбирать отдельные слова и понимать их смысл, достаточно частоты дискретизации 8000 Гц. С такими параметрами минута закодированного звука займет менее 480 Кб.

Для повышения качества кодирования используют более высокие частоты дискретизации, до 96000 Гц, однако такое качество требуется исключительно при работе в профессиональных звукозаписывающих студиях.

Современные компьютеры часто используются при создании и воспроизведении музыки. Музыкальное произведение можно закодировать как любой другой звук, однако это займет много места. Кроме того, возникнут трудности при изменении партий отдельных инструментов. Проще указать инструмент и задать, какую ноту и как долго он должен играть. Для воспроизведения музыки компьютер синтезирует разнообразные звуки, которые издают музыкальные инструменты.

В компьютерной музыке используется аббревиатура MIDI, которая расшифровывается как Musical Instrument Digital Interface (Цифровой интерфейс музыкальных инструментов). Имеется стандарт, описывающий основные используемые инструменты, – GM (General MIDI – единый MIDI). В стандарте описаны пятнадцать групп мелодических инструментов и одна группа ударных инструментов. Мелодический набор состоит из пианино, органов, гитар, струнных, духовых и тому подобных инструментов. За всеми инструментами закреплены номера, например, нулевой номер имеет акустический рояль. Кроме GM используются стандарты GS (General Synth – единый синтез), XG (Extended General – единый расширенный), GM2 (General MIDI 2). Все эти стандарты не заменяют собой GM, а лишь дополняют его новыми инструментами и дополнительными параметрами звучания.

Несмотря на то, что инструменты и тембры стандартизированы в GM, а MIDI-файл содержит только номера инструментов и тембров, этот файл по-разному будет воспроизводиться на разных звуковых картах. Это объясняется несколькими причинами. Так, в стандарте описаны только названия инструментов и тембров. Такие параметры звука, как громкость, окраска и другие не определены и выбираются производителями звуковых карт произвольно.

Кроме того, на качество воспроизведения звука сильно сказывается метод, которым этот звук воспроизводится. Применяют два основных метода синтеза звуков. Более простой метод называется частотным синтезом (FM-синтез). Для каждой ноты каждого инструмента определена частота и амплитуда звука, и звуковая плата компьютера синтезирует звук. Однако при этом синтезированные звуки получаются не слишком похожими на звучание реальных инструментов. В современных звуковых платах частотный синтез не используется.

Значительно лучшее качество звучания дают волновые таблицы (Wave Table). В таблице записаны закодированные звуки реальных инструментов. При этом используется метод кодирования амплитуды звукового сигнала через короткие промежутки времени. Например, если требуется воспроизвести удар по тарелке, звуковая плата проигрывает небольшой фрагмент, записанный в определенном месте таблицы. Фрагменты называют сэмплами (samples). Инструменты с малой длительностью звучания обычно записываются полностью, а для остальных может записываться лишь начало, конец звука и небольшая средняя часть, которая затем проигрывается в цикле в течение нужного времени. Такое кодирование обеспечивает предельную реалистичность звучания классических инструментов и простоту получения звука. Однако волновые таблицы могут занимать много места в памяти.

Так как музыка, представленная в цифровом виде, не требует преобразований, к компьютеру напрямую можно подключить цифровые синтезаторы. Наигрывая мелодию на синтезаторе, в компьютер вводится последовательность нот. Также синтезаторы позволяют проигрывать композиции, созданные на компьютере. Загрузив в синтезатор сэмплы из волновой таблицы, можно извлекать самые необычные звуки при нажатии клавиш.

В последнее время стало модным караоке, и в компьютере стали кодировать музыку вместе с текстом. Фактически караоке является вариантом MIDI. Музыка закодирована обычным способом, но дополнительно добавлен текст, заменивший описание одного из инструментов.

Хотя частота дискретизации при кодировании звукового сигнала по компьютерным меркам не очень велика, объем получившихся цифровых данных достаточно большой. Чтобы уменьшить объем, занимаемый цифровыми аудиоданными, применяют различные методы сжатия информации, в частности алгоритмы MPEG. Например, применение сжатия по алгоритму MPEG-1 Layer 3 (МР3) позволяет уменьшить объем данных более чем в десять раз, при сохранении качества звука, близкого к audio-CD. Наряду с МР3 применяется формат сжатия по стандарту WMA (Windows Media Audio), поддерживаемый последними версиями операционных систем Windows.

В обоих стандартах используется метод сжатия по психоакустической модели, то есть из исходного звукового сигнала удаляется информация, малозаметная на слух, после чего сигнал сжимается обычными методами, которые реализованы в программах–архиваторах. При таком методе кодирования неизбежно искажение исходного сигнала, а значит – потеря качества. Степень потери качества можно регулировать, однако при увеличении качества неизбежно растет объем информации. Основным параметром, характеризующим качество записи, является скорость потока данных, поступающих для декодирования. Часто этот параметр называют битрейтом (bitrate – частота битов).

Битрейт измеряется в килобитах в секунду и может составлять до 320 Кбит/с. В большинстве случаев вполне хватает 192 или даже 128 битрейт. Битрейт ниже 48 Кбит/с существенно ухудшит качество и его не следует применять для записи музыки. Для записи речи можно использовать меньший битрейт. Качественную диктофонную запись можно получить при битрейте равном 8 Кбит/с. Искажения при кодировании в форматах MP3 и WMA во многом зависят от характера музыки. Симфоническая музыка требует большего битрейта, а танцевальная – меньшего. Наиболее популярным битрейтом при кодировании музыкальных композиций считается битрейт 128 Кбит/с, дающий хорошее качество записи и позволяющий сжимать исходную информацию более чем в десять раз. Для хранения произвольных звуковых данных чаще всего используются файлы формата wav. В этом формате может храниться моно- или стереозвук, закодированный одним или двумя байтами и с различной частотой дискретизации. Файлы этого формата могут быть сжаты разными способами для достижения меньшего размера, а могут оставаться и несжатыми. Музыкальные файлы используют формат mid, так как цифровой музыкальный интерфейс и способ кодирования музыкальной информации называется MIDI. Сжатые файлы могут иметь расширение wav, а могут расширением указывать на используемый способ сжатия – mp3 или wma. Есть и несколько других форматов звуковых файлов, но они применяются значительно реже.

По теме: методические разработки, презентации и конспекты

Конспект урока информатики, 10-й класс Представление числовой информации в компьютере

Цели урока: Образовательные:  расширить представление о различных системах счисления;  научить переводить числа, представленные в различных позиционных система.

Звуковая информация в компьютере

Презентация «Звук и компьютер»Автор: Светлана Анатольевна Вертипрахова, учитель информатики МБОУ лицей №1 г.Кунгура Пермского края. Понятие «мультимедиа» сейчас широко используется не только в ин.

Представление текстовой информации в компьютере

В современной жизни человек сталкивается с различными способами кодирования информации. Чтобы научиться понимать информацию представленную различными способами необходимо ориентироваться в многообрази.

Представление числовой информации в компьютере

конспект и презентация.

Тема урока: Растровая и векторная графика. Представление графической информации в компьютере.

Открытый урок, содержащий план — конспект урока, прослеживается межпредметная связь, учащиеся сами формулируют тему урока, разгадывая ребусы; есть презентация к уроку с физминуткой (по теме урока).

Презентация к уроку «Представление звуковой информации в компьютере»

Презентация к уроку информатики в старших классах школы.

Презентация «Представление звуковой информации»

Презентация по информатике на тему «Представление звуковой информации» для студентов 1 курса (10 класс).

САМОЕ ГЛАВНОЕ

Звук — это распространяющиеся в воздухе, воде или другой среде волны с непрерывно меняющейся амплитудой и частотой.

Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму. Для этого его подвергают временной дискретизации и квантованию: параметры звукового сигнала измеряются не непрерывно, а через определённые промежутки времени (временная дискретизация); результаты измерений записываются в цифровом виде с ограниченной точностью (квантование).

Таким образом, при оцифровке звука искажение сохраняемого сигнала происходит дважды: во-первых, при дискретизации теряется информация об истинном изменении звука между измерениями, а во-вторых, при квантовании сохраняются не точные, а близкие к ним дискретные значения.

Объём оцифрованного звукового фрагмента в битах находится как произведение частоты дискретизации в Гц, глубины кодирования звука в битах, длительности звучания записи в секундах и количества каналов.

Форматы аудио

Форматов для хранения аудио много, однако, все они делятся на две большие группы в зависимости от того, какой из методов сжатия используется – LOSELESS или LOSSY.

  1. LOSELESS – метод сжатия без потерь. Качество звуковой информации остается без изменений, однако за него приходится платить большим объемом компьютерной памяти. Используется для хранения музыки и других данных, где важно качество. Форматы, которые основаны на данном методе сжатия: FLAC, APE, TAC, ALAC и другие. На данный момент зарабатывают все большую популярность в связи с увеличением дискового пространства.
  2. LOSSY – сжатие с потерями. При таком методе файл сохраняются с искажениями относительно оригинала. В основном эти искажения не воспринимаются человеческим слухом, а также не замечаются при плохом аудио оборудовании. LOSSY позволяет существенно сэкономить дисковое пространство. На данный момент этот метод сжатия является доминирующим.

Форматы кодирования использующие алгоритмы LOSSY:

  • MP3 (MPEG-1,2,2.5) – самый популярный аудио формат. Проигрывается на всех аудио и видео системах, по умолчанию поддерживается всеми операционными системами. Искажения заметны на высокоточной дорогостоящей аппаратуре.
  • AAC – формат, который разрабатывался и позиционировался, как приемник mp3. Не получил широкого распространения. Преимущества перед mp3: большая гибкость кодирования, возможность использовать до 48 звуковых каналов.
  • HE-AAC (High-Efficiency Advanced Audio Coding) – используется в цифровом радио и телевиденье.

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Общие сведения о звуковой информации

В течение дня обычный человек слышит большое количество различных звуков. Давайте попытаемся кратко понять, что же такое звук. Звук – колебания воздуха, которые были созданы неким источником.
Под источником звука можно понимать любой предмет, объект, который способен генерировать звуковые волны:

Человек, который что-то произнес.

Проезжающий поезд, от которого исходит шум.

Музыкальные инструменты, на которых играет музыкант.

В самом широком физическом смысле под звуком следует понимать простую волну. Если говорить о графической интерпретации звука, то звуковые волны следует представлять, как множество синусоидальных графиков функций, каждый из которых имеет ряд обязательных параметров.

Звук обладает множеством характеристик, но ключевыми являются лишь две:

Амплитуда звуковой волны.

Частота звуковой волны.

Об этих свойствах будет детально рассказано в следующем разделе данной статьи.

Сейчас я вам покажу график функций идеальной звуковой волны, которой в природе физически не существует.

Идеальная звуковая волна

Графическое представление идеальной звуковой волны

Также хочу продемонстрировать график функций неидеальной звуковой волны, которая является речью обыкновенного человека.

Неидеальная звуковая волна

Графическое представление неидеальной звуковой волны, которая является речью человека

Посмотрев на оба выше представленных графика функций, у вас должны возникнуть следующие мысли и закономерный вопрос: если перед нами изображен график функций, то где координатная ось, координатная сетка, градуированные шкалы осей ОХ и оси ОY, а также нужно понять, на основании каких закономерностей построены данные графики функций? То есть, какие параметры выступают значением по оси абсцисс и по оси ординат. О данных характеристиках, параметрах будет рассказано ниже.

Запись изображений

К компьютеру могут быть подключены цифровые фотокамеры, видеокамеры (веб-камеры) и ТВ–тюнеры, что позволяет получать фотоснимки и видеоизображение непосредственно в цифровом (компьютерном) формате.

Для получения высококачественных фотографий применяются цифровые фотоаппараты. Для сохранения фотографий они используют модули флеш-памяти или жесткие диски маленького размера. Запись изображений на жесткий диск компьютера может осуществляться путем подключения камеры к компьютеру.

Если установить в компьютер специальную плату (ТВ–тюнер) и подключить к ее входу телевизионную антенну, то появляется возможность просматривать телевизионные передачи непосредственно на компьютере.

Для трансляции видео по компьютерным сетям используются веб–камеры.

Существуют программы, предназначенные для просмотра и организации изображений (так называемые графические просмотрщики). Они осуществляют просмотр, упорядочение и публикацию цифровых фотографий, конвертирование графических файлов из одного формата в другой и др. Наиболее развитые программы этого класса содержат ряд инструментов для обработки изображений, в том числе и пакетной. Примерами таких программ являются ACDSee, XnView, IrfanView, Picasa.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector