Зачем покупать контроллер вентиляторов – выбираем лучший
В последние несколько лет популярность контроллеров вентиляторов ПК растет, и мы видим, что всё больше производителей корпусов, добавляют контроллеры вентиляторов в свои продукты. Оно и понятно – распространение мощных компонентов, таких как процессоры и видеокарты, ведёт к повышению температуры в вашей компьютерной системе, что требует установки дополнительных вентиляторов. Эта возросшая потребность в вентиляторах (плюс увлечение RGB) делает контроллеры вентиляторов весьма важной составляющей игровой сборки.
Когда дело доходит до сборки нового ПК, контроллер вентиляторов часто можно упустить из виду. Это достаточно справедливо, так как многие думают о том, чтобы отдать предпочтение новому кулеру вместо дополнительных вентиляторов.
Вместе с тем, увеличенные потоки воздуха и эстетичность, которые могут принести вентиляторы, обычно стоят того, чтобы начать использовать контроллер вентиляторов для организации и управления.
В этой статье мы расскажем о лучших контроллерах вентиляторов для ПК, о том, какой контроллер вентиляторов вам может понадобиться, и о нескольких вещах, которые следует учитывать перед покупкой.
На свой страх и риск
Экспериментируя с системой охлаждения компьютера, следует понимать, что полная остановка или сильное падение скорости вращения кулеров может привести к перегреву охлаждаемого ими устройства. В большей степени это относится к центральному процессору и видеокарте. Все прочие вентиляторы обычно имеют вспомогательную функцию, однако если от их работы все же зависит уровень охлаждения названных устройств, то их управлением нужно быть осторожным.
Впрочем, даже старые материнские платы и видеокарты оснащались механизмом защиты от перегрева, который моментально отключает подачу питания при достижении температуры их нагрева определенного значения. Но это не должно являться поводом для испытания надежности и эффективности работы данного механизма.
Другими словами — делайте все на свой страх и риск.
SpeedFan
SpeedFan — одна из самых известных утилит для мониторинга в режиме реального времени скорости вращения и контроля охлаждающих вентиляторов и не только. Программа рассчитана на опытных пользователей, имеющих опыт в разгоне процессора и видеокарт, однако для управления кулерами особых навыков не требуется.
1
Регулировка скорости вращения вентиляторов осуществляется путем изменения процентного значения напротив выделенных на изображении выше опций:
- «Sys». Корпусный кулер (вытяжка, обдув), подключаемый в специальное отведенное гнездо материнской платы и обеспечивающий контроль общей температуры внутри системного блока (кейса). Текущая скорость вращения вентилятора отображается напротив строки «Sys Fan», а температура — напротив «System».
- «AUX» (Auxiliary). Примерно то же, что и в предыдущем случае. Это также вспомогательные вентиляторы, подключаемые к специальным гнездам материнской платы. Также может относиться к небольшим кулерам охлаждения северного и южного мостов, которые бывают встроены в некоторые модели системных плат. Их можно использовать и для охлаждения жестких дисков. Т.е. точно нельзя сказать, что именно охлаждают AUX-кулеры, не взглянув внутрь системного блока.
- «CPU». Это самый главный вентилятор любого компьютера, отвечающий за охлаждение центрального процессора. Текущая скорость его вращения отображена напротив параметра «CPU Fan», а температура процессора — напротив «CPU», «Core 0», «Core 1» и т.д. (показания для отдельных ядер процессора).
- «GPU Fan». Кулер графического процессора или по-простому — видеокарты. Скорость вращения указана напротив одноименного параметра, а текущая температура — напртив «GPU».
Обращаем внимание, что наличие и названия тех или иных параметров в программе SpeedFan зависит от модели материнской платы и/или иных критериев. Отрицательные температуры напротив «AUX» обычно означают, что к соответствующему гнезду платы кулер не подключен.
Интеллектуальный многоканальный контроллер вентиляторов охлаждения для ПК. Часть 1 — Схемотехническое решение
В статье мы рассмотрим конструкцию на микроконтроллере, которая позволит в автоматическом режиме регулировать скорость вращения вентиляторов охлаждения персонального компьютера. Управление осуществляется на основании данных о температуре, которая также измеряется устройством при помощи датчиков внутри корпуса компьютера. При управлении учитываются пользовательские настройки.
Автоматическое управление скоростью вентиляторов охлаждения позволяет значительно снизить создаваемый ими шум. Любой человек, имеющий «шумный» компьютер, а это особенно касается медиа-центров, например в гостиной комнате, сразу заметит преимущества от использования данного устройства. При низкой температуре вентиляторы вращаются очень медленно, скорость вращения повышается по мере необходимости.
Устройство достаточно функционально, но при этом несложно в использовании и конфигурировании. Настройка основных параметров осуществляется в программе на ПК с графическим пользовательским интерфейсом. Кроме того, после настройки контроллер может функционировать как автономное устройство без связи с ПК, что позволит применить его не только для управления вентиляторами охлаждения ПК. Все настройки после конфи-гурирования хранятся в микроконтроллере.
Отличительные особенности:
- Конфигурируемое управление скоростью вращения вентиляторов на основе данных о температуре;
- Поддержка управления максимально восемью вентиляторами, измерение температуры в четырех отдельных каналах;
- Возможность управления вентиляторами различного типа.
- USB интерфейс и программа для Windows для конфигурирования и мониторинга;
- Звуковое оповещение при отказе вентилятора или датчика;
- Возможность автономной работы контроллера после конфигурирования; все настройки хранит микроконтроллер PIC.
Принципиальная схема и конструкция контроллера
Основой схемы является микросхема Microchip PIC18F2550 – высокопроизводительный Flash-микроконтроллер с USB интерфейсом. Микроконтроллер выполняет задачу измерения температуры по 4 каналам и осуществляет управление преобразователями напряжения. Регулировка скорости вращения вентиляторов осуществляется посредством изменения выходного напряжения преобразователей. Питание на схему контроллера подается от блока питания ПК, используются напряжения +5 В и +12 В.
Кликните для увеличения |
Принципиальная схема контроллера вентиляторов охлаждения |
В контроллере используются 4 схемы понижающих преобразователей напряжения (Buck Converter). Микро-контроллер генерирует последовательность импульсов на каждом выходе (порты RA4, RA5, RC7, RC8), отдельно для каждого преобразователя, и, варьируя шириной импульсов, может изменять выходное напряжение. В нашем случае частота импульсов равна 2.5 кГц, а ширина импульсов изменяется от 0 до 170 мкс, что дает изменение выходного напряжения от 0 В до 12 В. Четыре понижающих преобразователя построены на базе микросхемы 8-канального линейного драйвера IC2 UDN2981A и 4-х дросселей, имеющих индуктивность 100 мкГн. Для организации одного канала преобразователя используются два канала драйвера со своими диодами (диод является обязательным условием при построении данного понижающего преобразователя).
К выходам преобразователей напряжения, как видно на схеме, подключено по паре разъемов различных типов. Таким образом, возможно подключение до 8 вентиляторов. Каждый преобразователь напряжения в схеме управляется независимо, с различными характеристиками управления, и рассчитан на нагрузку до 250 мА. Вентиляторы охлаждения, применяемые в системных блоках компьютеров, потребляют менее 120 мА, что позволяет подключать на один выходной канал два вентилятора. Однако перед подключением вентиляторов к контроллеру необходимо убедится в выполнении данного условия.
Для измерения температуры применяются аналоговые датчики LM335, обозначенные на схеме Датчик A – Датчик D, подключаемые к портам микроконтроллера RA0 – RA3, соответственно. Прецизионный датчик температуры LM335 – это недорогой термочувствительный элемент с диапазоном измерений от –40°C до +100°C и точностью 1 °C. Фактически, LM335 – это стабилитрон с нормированным Температурным Коэффициентом Напряжения (ТКU =10 мВ/K). Т.е. изменение температуры датчика на 1 градус ведет к изменению напряжения на 10 мВ.
Остальные компоненты в окружении микроконтроллера стандартны. Кварцевый резонатор 20 МГц исполь-зуется для тактирования микроконтроллера, звуковой излучатель – для оповещения о неполадках датчиков или вентиляторов. Разъем USB подключен непосредственно к микроконтроллеру, т.к. он имеет встроенный USB трансивер. Напряжение +5 В от USB интерфейса, когда кабель USB подключен к контроллеру, поступает на вывод 1 микроконтроллера и используется для старта процесса коммуникации по интерфейсу USB.
Контроллер собран на односторонней печатной плате с размерами 100 × 80 мм с учетом установки в 3½” отсек для дисковода. Пользователи могут самостоятельно разработать печатную плату, в соответствии со своими нуждами и возможностями.
Расположение элементов на печатной плате контроллера вентиляторов охлаждения |
Контроллер рассчитан на управление вентиляторами охлаждения системного блока, однако его можно при-менить для управления вентиляторами охлаждения процессора, видеокарты. В таком случае необходимо использовать датчики температуры, закрепленные на соответствующих радиаторах охлаждения (обязательно с использованием термопасты).
Вариант расположения контроллера внутри системного блока |
Контроллер можно использовать также для управления вентилятором охлаждения блока питания, но следует помнить, что это опасно, так как многие элементы в блоке питания находятся под напряжением сети.
Загрузки
Прнципиальная схема (jpg, Eagle), рисунки печатной платы (png, Eagle), список компонентов (pdf) – скачать
Часть 2 – Детальное описание узлов, подключение вентиляторов и датчиков температуры
Перевод: Vadim по заказу РадиоЛоцман
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Блок управления вентиляторами компьютера
Алгоритм работы устройств, управляющих охлаждением элементов системного блока компьютера, описания которых были опубликованы за последние несколько лет, приблизительно одинаков. Пока температура не выше допустимой, на вентиляторы поступает уменьшенное до 6,5. 7 В напряжение питания. При этом система охлаждения, хотя и работает менее эффективно, но значительно меньше шумит. Напряжение обычно снижают, включая последовательно в цепь питания вентилятора резистор или работающий в активном режиме биполярный транзистор. К сожалению, кроме своего основного назначения, этот элемент ограничивает пусковой ток двигателя вентилятора. В результате уменьшается его механический пусковой момент и, не преодолев трения покоя, крыльчатка вентилятора при включении компьютера может остаться неподвижной. Если температура превысила заданную (обычно 50 °С), срабатывает пороговое устройство и напряжение питания вентиляторов увеличивается до номинального (12 В). Пока температура не снизится, система охлаждения работает интенсивнее. Однако ее максимально возможная эффективность все-таки не достигается, так как заметная часть напряжения питания падает на коммутирующем элементе — биполярном транзисторе.
В предлагаемом блоке регулирование напряжения, питающего двигатели, ведется импульсным методом! В качестве коммутирующих элементов использованы полевые транзисторы с очень низким (доли ома) сопротивлением каналов в открытом состоянии. Они не ограничивают пусковой токи практически не уменьшают питающее напряжение на работающих на полную мощность вентиляторах.
Схема блока управления вентиляторами компьютера изображена на рис.1. В нем два независимых канала управления. Выход первого канала, собранного на микросхемах DA1 и DA2 и транзисторах VT1, VT2, вилка ХР1, к которой подключают вентилятор, обдувающий теплоотвод процессора . Второй канал на микросхеме DA3 и транзисторе VT3 обслуживает другие вентиляторы системного блока, которые подключают к вилке ХР2
На интегральных таймерах DA2 и DA3 собраны одинаковые генераторы импульсов частотой 10. 15 Гц. Цепи зарядки и разрядки времязадающих конденсаторов С1 и С2 (соответственно первого и второго генераторов) разделены диодами VD1-VD4, что позволяет регулировать скважность генерируемых импульсов переменными резисторами R4 и R5. Импульсы поступают на затворы полевых транзисторов VT2 и VT3, каналы которых (сопротивлением в открытом состоянии не более 0,35 Ом) включены последовательно в цепи питания вентиляторов. Изменяя скважность импульсов, можно регулировать частоту вращения роторов вентиляторов в очень широких пределах при сохранении достаточно большого пускового момента. Благодаря импульсному режиму работы полевых транзисторов рассеиваемая ими мощность очень мала, что позволяет не устанавливать эти транзисторы на теплоотводы. Конденсаторы С5 и С6 сглаживают перепады импульсов, что устраняет следующие с частотой повторения импульсов хорошо слышимые щелчки в двигателях вентиляторов. В канале управления вентилятором процессора имеется дополнительный узел, включающий этот вентилятор на полную мощность, если температура теплоотвода процессора выше допустимой. Узел построен по известной схеме на ОУ DA1. Датчиком температуры служит транзистор VT1, закрепленный на теплоотводе процессора. Температуру срабатывания устанавливают подстроечным резистором R7. Сигнал с выхода ОУ DA1 логически складывается с импульсами генератора на таймере DA2 с помощью диодов VD5 и VD6, в результате чего при превышении допустимой температуры транзистор VT2 открыт постоянно и вентилятор работает на полную мощность.
Печатная плата блока управления изображена на рис. 2. Она рассчитана на установку постоянных резисторов МЛТ-0,125, подстроечных СПЗ-44 А (R 4, R 5) и СП 4-3 (R 7).
Конденсатор СЗ-КМ-6, остальные — оксидные К50-35. Разъемы XS1, ХР1, ХР2 — от неисправных вентиляторов и материнских плат. Вместо КР140УД708 можно применить практически любой ОУ в аналогичном корпусе, как отечественный, так и импортный. Транзистор КТ315В в качестве температурного датчика заменит любой маломощный кремниевый транзистор структуры n-р-n в пластмассовом корпусе с коэффициентом передачи тока не менее 100. Полевые транзисторы КП704А можно заменить импортными n-канальными с низким сопротивлением открытого канала, например, IRF640 или IRF644. Вместо диодов КД522 подойдут другие маломощные импульсные.
Предварительную регулировку блока управления удобнее всего провести в лабораторных условиях. Движки подстроечных резисторов R4, R5, R7 устанавливают в крайнее по часовой стрелке положение. К вилкам ХР1, ХР2 подключают вентиляторы, а источник напряжения 12±0,1 В — к гнездам 2(+) и 1(-) розетки XS1. При включении питания вентиляторы должны начать вращаться с максимальной частотой. Медленно поворачивая движки подстроечных резисторов R 4 и R 5 против часовой стрелки, плавно уменьшайте частоту вращения вентиляторов и создаваемый ими шум. Продолжайте уменьшать частоту до пропадания шума подшипников. Останется лишь незначительный шум создаваемого вентиляторами воздушного потока. Затем проверьте узел на ОУ DA1. Для этого нагрейте транзистор VT1 (датчик температуры) приблизительно до 40 °С любым доступным способом, в крайнем случае, зажав транзистор пальцами. Медленно поверните движок резистора R7 против часовой стрелки до переключения вентилятора на максимальную частоту вращения и прекратите нагревать датчик . Через несколько десятков секунд частота вращения должна скачком уменьшиться. На этом предварительную регулировку блока управления можно закончить.
Установив блок и датчик температуры на предназначенные для них места в системном блоке компьютера и подключив все вентиляторы, включите компьютер в сеть. Запустите любую имеющуюся программу контроля температуры элементов компьютера, наблюдайте за температурой процессора. С помощью подстроечного резистора R7 добейтесь, чтобы переключение вентилятора процессора на максимальные обороты происходило при температуре 50°С. После снижения температуры установите подстроечным резистором R4 частоту вращения вентилятора такой, чтобы при средней загрузке процессора температура его корпуса не превышала 40°С. Если при температуре в помещении не более 25. 28 °С вентилятор процессора будет часто включаться на полную мощность, необходимо немного увеличить частоту вращения сначала корпусных вентиляторов, а затем и процессорного. Во многих системных блоках компьютеров фактически установлены далеко не все предусмотренные конструкцией вентиляторы. Рекомендуется, по возможности, установить их самостоятельно. Это повысит общую эффективность охлаждения при сниженных оборотах и даст возможность избавиться от шума.
Установка блока и датчика температуры
Установив блок и датчик температуры на предназначенные для них места в системном блоке компьютера и подключив все вентиляторы, включите компьютер в сеть. Запустите любую имеющуюся программу контроля температуры элементов компьютера, наблюдайте за температурой процессора. С помощью подстроечного резистора R7 добейтесь, чтобы переключение вентилятора процессора на максимальные обороты происходило при температуре 50°С.
После снижения температуры установите подстроечным резистором R4 частоту вращения вентилятора такой, чтобы при средней загрузке процессора температура его корпуса не превышала 40°С. Если при температуре в помещении не более 25…28 °С вентилятор процессора будет часто включаться на полную мощность, необходимо немного увеличить частоту вращения сначала корпусных вентиляторов, а затем и процессорного. Во многих системных блоках компьютеров фактически установлены далеко не все предусмотренные конструкцией вентиляторы. Рекомендуется, по возможности, установить их самостоятельно. Это повысит общую эффективность охлаждения при сниженных оборотах и даст возможность избавиться от шума.
Список радиоэлементов