Три совета по выбору блока питания компьютера

Правильный выбор вентилятора для корпуса компьютера

Новые технологии и программы разрабатываются каждый день, требуя от компьютеров всё большей производительности и отдачи. С каждым годом видеокарты, платы, процессоры и другие составляющие компьютера совершенствуются, что приводит к увеличению потребляемой и выделяемой энергии. В связи с этим пользователь нередко сталкивается с проблемой перегрева, что, в свою очередь, ведёт к ухудшению работы системы и поломкам составляющих ПК. Именно поэтому вентилятор – крайне важный аспект в нормальной работе компьютера. Все современные устройства оснащены той или иной системой охлаждения. Бывает, что вентилятор установлен только на процессоре или на видеокарте. Их задача – сохранять температуру только одного элемента, выбрасывая при этом горячий воздух в корпус. Такая система спасает отдельные детали, но общая температура внутри корпуса только повышается. Именно поэтому вентиляционная система должна быть полной и обслуживать все компоненты устройства. Корпусный вентилятор – отличное решение сразу многих проблем.

Как правильно выбрать вентилятор для корпуса компьютера

Рекомендации по выбору вентилятора для корпуса компьютера.

Мощность блока питания

Мощность блока питания компьютера

Современные процессоры могут потреблять мощность более 100 Вт.

Потребляют энергию и материнская плата, и память, и винчестер, и видеокарта, и привод DVD.

Фирмы — производители могут писать завышенную мощность на этикетке, чтобы опередить конкурентов.

Если у вас установлена обычная (не игровая) видеокарта, то можно остановиться на мощности 400 — 460 Вт. Буква «W» после цифр обозначает активную мощность.

Активная мощность – это та, которая производит полезную работу (переключает транзисторы процессора, крутит приводы и вентиляторы, зажигает индикаторы и т.п.)

Если же установлена (и именно игровая), то мощность должна быть еще выше. Мощные видеокарты можно узнать по большим радиаторам охлаждения и дополнительному питающему разъему на плате.

Современный даже электромеханический винчестер потребляет обычно не более 10 Вт. Поэтому этой мощности с лихвой хватит еще для 2 — 3 дополнительных винчестеров (больше обычно и не надо). Такой винчестер содержит вращающийся информационный диск (диски). Основная часть потребляемой мощности расходуется на управление двигателем, вращающим диск.

SSD накопитель не содержит вращающихся частей, поэтому потребляет энергии на порядок меньше.

Правда, если в одном корпусе установлено несколько электромеханических винчестеров, их «жужжание» может доставить некоторый дискомфорт. Шум может быть и от вентилятора, установленного в питающем блоке. Поэтому внимательно посмотрите на

Разъем для подключения

Сегодня существует три основных вида подключения питания:

  • Четырехпиновый. Подключается к соответствующему разъему на материнской плате. Такой вариант позволяет регулировать частоту вращения лопастей, в зависимости от температуры комплектующих. Достигается такой эффект, благодаря изменению напряжения на выходе.

  • Трехпиновый. В сущности, вариация вышеназванного типа, однако задействуется всего 3 контакта. В этом случае частота вращения лопастей почти не регулируется.
  • Molex. Универсальный четырехконтактный разъем, с помощью которого можно запитать многие компоненты. Вентилятор при этом не нуждается в наличии разъема на материнке, подключаясь к БП напрямую. Регулировать частоту вращения лопастей в этом случае невозможно, так как напряжение на выходе стандартное.
  • Существуют также модели кулеров с комбинированным подключением – у них есть и трехконтактный разъем и Молекс.

Процессор

image

Практически везде на процессоре стоит вентилятор, от которого избавиться достаточно сложно. Проблему нужно решать в комплексе: уменьшить тепловыделение процессора и купить мощный радиатор.
Если есть возможность — нужно взять процессор из серии энергоэффективных. Например, у AMD есть 2 похожие модели: Athlon X2 4800+ и Athlon X2 4850e. По производительности идентичны, а вот по TDP отличаются на 20 Вт: 65 против 45. Второй способ уменьшения тепловыделения — понижение частоты и напряжения. Все современные процессоры поддерживают возможность снижения частоты в моменты простоя и повышения до номинала при возникновении нагрузки. Существуют различные сторонние программы, которые управляют этим процессом. В висту эта функциональность встроена, достаточно только поставить драйвер процессора и покопаться в панели управления в разделе «Электропитание».
Радиатор на процессор должен быть большим и на тепловых трубках. На данный момент — это факт. Для себя я после чтения многочисленных обзоров остановился на модели Ice hammer 4400B, как наиболее оптимальной по соотношению цена/качество. Обзор можно найти здесь. Дополнительным плюсом данного радиатора является наличие в комплекте переменного резистора, позволяющего плавно настраивать обороты вентилятора.

При таких размерах во многих случаях вентилятор на процессор вообще не понадобится.
Вывод: использовать мощный радиатор, настроить динамическое управление частотой и напряжением в зависимости от загрузки. По возможности использовать энергоэффективный процессор.

Тип подшипника

Подшипник – это механизм, благодаря которому вращаются лопасти. Он подвержен наибольшему воздействию и износу из-за трения, а также является главным источником шума. Эта характеристика отвечает за долговечность кулера. К основным типам относятся:

  1. Подшипник скольжения. Характеризуется непродолжительным сроком работы, средней шумностью и низкой ценой.
  2. Подшипник качения. Отличается повышенной шумностью, но и срок работы значительно больше.
  3. Гидродинамический подшипник. Данный тип обеспечен самосмазыванием, что снижает трение и продлевает срок эксплуатации.
  4. Подшипник с магнитным центрированием. Основой этого механизма являются ось и магнитное поле, благодаря чему трения практически не происходит. Срок службы, соответственно, очень высок, как и цена.

Выбирая вентилятор, определитесь, какие характеристики для вас важнее. Производители представляют огромную вариативность, давая возможность подобрать что-то оптимальное для каждого.

Представляем подборку корпусных вентиляторов 120 мм от популярных мировых производителей с лучшим соотношением цена/качество.

Вопрос охлаждения компьютера не теряет свою актуальность ни зимой ни летом, так как в оба сезона во многих домах наблюдается повышенная температура. И не важно, связано это с теплым южным ветром в районах с жарким климатом или с работой системы отопления при ограниченном воздушном потоке.

В любом случае справиться с ситуацией поможет установка достаточно мощного процессорного кулера и улучшение охлаждения ПК с помощью корпусных вентиляторов.

В этой статье мы рассмотрим наиболее популярные и удачные модели корпусных вентиляторов размером 120 мм, так как именно такие вентиляторы сейчас устанавливаются в большинство современных ПК.

Содержание

Содержание

В статье представлены только достаточно качественные вентиляторы (которые не вибрируют и не выходят быстро из строя) с хорошим воздушным потоком (для высокого качества охлаждения) и сравнительно низким уровнем шума (обычно это модели со скоростью 1200-1500 об/мин).

В подборку попали модели от брендов: Artic, Deepcool, be quiet!, Cougar, Corsair, Noctua. Некоторые бренды не были включены в обзор, так как не имеют оптимальных актуальных моделей, которые есть в широкой продаже.

Начнем с более дешевых моделей, плавно переходя к более дорогим, указывая чем отличается более дорогая модель от предыдущей более дешевой.

Охлаждение блока питания

Наличие в любом блоке питания вентилятора для охлаждения — считается нормой. Диаметр вентилятора – может быть равным 120 мм, встречается вариант на 135 мм и, наконец, 140 мм.

Системный блок предусматривает установку БП вверху корпуса – тогда, выбирайте любую модель с горизонтально расположенным вентилятором. Больше диаметр – меньше шум (c одинаковой мощностью охлаждения).

Скорость вращения должна меняться в зависимости от внутренней температуры. Когда БП не перегревается – зачем нужно крутить «вентиль» на всех оборотах, и досаждать пользователю шумом? Существуют модели БП, полностью останавливающие свой вентилятор при потребляемой мощности менее 1/3 расчетной. Что — удобно.

Главное в системе охлаждения БП – это ее тишина (или – полное отсутствие вентилятора, такое тоже встречается). С другой стороны, охлаждение нужно затем, чтобы не допустить перегрева деталей (высокая мощность, в любом случае, влечет тепловыделение). На больших мощностях, без вентилятора – не обойтись.

Примечание: на фото – результат моддинга (удаление стандартной решетки-прорези, установка вентилятора Noktua и гриля 120 мм).

Как подключить 3-pin кулер к 4-pin

Для подключения 3-pin кулера к 4-pin разъему на материнской плате для возможности программной регулировки оборотов служит вот такая схема:

При прямом подключении 3-х проводного вентилятора к 4-х контактному разъёму на материнке вентилятор будет всегда вращаться, потому как у материнской платы не будет возможности управления 3 pin вентилятором и регулировки числа оборотов кулера.

Подсветка

Некоторые модели вентиляторов оборудованы светодиодами. Наличие подсветки не несет полезной функциональности, а только поможет осветить содержимое системного блока при наличии стеклянной боковой крышки. Выделяют два типа подсветки:

Вентиляторы с фиксированной подсветкой светят только одним цветом или сразу несколькими. Отключить подсветку невозможно, только если выпаять светодиоды.

В RGB используется контроллер, что позволяет менять подсветку автоматически или задать определенное свечение в программе на ПК/смартфона/пульта ДУ.

Тип подшипника

Подшипник – это механизм, благодаря которому вращаются лопасти. Он подвержен наибольшему воздействию и износу из-за трения, а также является главным источником шума. Эта характеристика отвечает за долговечность кулера. К основным типам относятся:

  1. Подшипник скольжения. Характеризуется непродолжительным сроком работы, средней шумностью и низкой ценой.
  2. Подшипник качения. Отличается повышенной шумностью, но и срок работы значительно больше.
  3. Гидродинамический подшипник. Данный тип обеспечен самосмазыванием, что снижает трение и продлевает срок эксплуатации.
  4. Подшипник с магнитным центрированием. Основой этого механизма являются ось и магнитное поле, благодаря чему трения практически не происходит. Срок службы, соответственно, очень высок, как и цена.

Выбирая вентилятор, определитесь, какие характеристики для вас важнее. Производители представляют огромную вариативность, давая возможность подобрать что-то оптимальное для каждого.

Эта работа была прислана на наш «бессрочный» конкурс статей.

От правильного выбора корпусных вентиляторов зависит не только эффективность охлаждения внутренностей корпуса, но и (что часто даже более важно) уровень шума. Особенно большой простор для творчества при самостоятельной врезке вентилятора в корпус или их установке в навороченных корпусах, в которых есть место под 5-6 вентиляторов. Общий принцип их установки достаточно прост (см. мою статью «Вентиляция корпусов — мифы и реальность»). Если есть несколько вентиляторов и нужно с их помощью получить максимальный воздухообмен, они все должны работать в одну сторону (для корпусов типа тауэр, как правило, на выдув), при этом должен быть обеспечен свободный доступ наружного воздуха в корпус (то есть достаточная площадь вентиляционных отверстий, соизмеримая с эффективной площадью вентиляторов). В этой статье я сначала попытаюсь дать краткий FAQ по вентиляторам, затем более подробно опишу методику выбора «с цифрами в руках».

Какие бывают вентиляторы

реклама

Модель Диаметр n об/мин Шум Q макс Мощность Ток
8025L 80 2000 23 25 CFM 1 0.08
8025M 80 2500 25 32 CFM 1.3 0.11
8025H 80 3000 27 37 CFM 1.9 0.16
9225L 92 1800 24 30 CFM 1.1 0.07
9225M 92 2200 26 38 CFM 1.8 0.15
9225H 92 2600 28 48 CFM 2.5 0.21
12025L 120 1800 29 71 CFM 3 0.25
12025M 120 2000 30 79 CFM 3.36 0.28
12025H 120 2200 32 85 CFM 4 0.33

Мы видим, что для каждого размера есть три модификации (в порядке увеличения оборотов и мощности) — L, M, H. Наиболее распространенной является серия M — она обеспечивает наилучшее соотношение между производительностью и шумом. Нетрудно догадаться, что первые две-три цифры обозначают диаметр, а следующие две высоту. Кстати, диаметр измеряется как размер стороны «квадрата», реальный диаметр крыльчатки на 5-10 мм меньше.

Выбрав нужный вентилятор из таблицы, перед походом в магазин выпишите потребляемый им ток (или мощность), потому что на ценнике продавцы обычно указывают лишь диаметр, ничего не говоря о производительности. А ток или мощность всегда написаны на наклейке вентилятора, поэтому ошибиться будет трудно (особенно если придется покупать вентилятор другой фирмы, у которой своя система обозначений и своя линейка вентиляторов).

Основной характеристикой вентилятора является производительность (расход воздуха) Q, измеряемая в CFM (кубических футах в минуту). Сведения о ней обычно есть на сайте производителя, а иногда и на самом вентиляторе. Однако это максимальная производительность в режиме «настольного вентилятора», при установке в корпус она упадет. Также вентилятор характеризуется создаваемым напором (давлением), скоростью воздушного потока, шумом, потребляемой мощностью, особенностями конструкции и некоторыми другими менее значимыми деталями. Из этих характеристик обычно указывают шум (правда, в каких-то «китайских децибелах», при реальных измерениях он обычно оказывается намного больше), иногда указывают напор, а скорость потока легко вычислить, разделив производительность на эффективную площадь.

реклама

Тут я дам тезисы и рекомендации общего характера. Некоторые следуют из анализа таблицы характеристик, обоснование остальным будет в конце статьи.

  1. Чем больше напор вентилятора, тем меньше падает его производительность при установке в корпус.
  2. Максимальная производительность и напор прямо пропорциональны оборотам.
  3. Обороты прямо пропорциональны напряжению.
  4. При одинаковой максимальной производительности — напор, скорость потока и мощность будут меньше, а КПД больше:
  5. у вентилятора большего диаметра по сравнению с более быстроходным меньшего диаметра;
  6. у нескольких параллельно включенных вентиляторов на пониженных оборотах по сравнению с одним таким же на повышенных;
  7. у одного вентилятора большого диаметра по сравнению с несколькими параллельно включенными меньшего диаметра;
  8. у осевого вентилятора по сравнению с центробежным (бловером).
  9. При равной максимальной производительности:
  10. вентилятор большего диаметра заметно тише, чем быстроходный вентилятор меньшего диаметра;
  11. два параллельно включенных вентилятора на пониженных оборотах намного тише, чем один такой же на повышенных оборотах;
  12. два параллельно включенных вентилятора могут быть как тише, так и громче, чем один большего диаметра.

Расчет вентиляции корпуса

Сначала рассчитываем необходимый объем воздуха, который нужно прокачать через корпус. Исходной формулой служит уравнение теплового баланса при условии, что теплопередачей через стенки пренебрегаем:

N -мощность системы (если вентилятор БП работает на вдув, сюда надо прибавить порядка 50Вт тепловыделения в нем); Q — расход; C — теплоемкость воздуха; P — плотность воздуха; T — температура (внутренняя и наружная соответственно).

Отсюда после подстановки значений С, P и перевода Q из кубометров в секунду в CFM получаем формулу для практического использования:

Эта формула приближенная, поскольку теплоемкость и плотность воздуха зависят от давления и температуры, а они нам точно неизвестны.

Мощность системы получают либо суммированием мощности компонентов, либо просто оценкой. Для средней современной системы эта мощность будет 150-200 Вт, для «навороченной» и разогнанной — порядка 250 Вт. Основной «печкой» является процессор, данные по его мощности можно найти на сайтах производителей или в многочисленных обзорных статьях. При разгоне с поднятием напряжения считаем, что мощность пропорциональна квадрату напряжения (например, при увеличении напряжения с 1,6 до 1,75В мощность увеличится на 20% при той же частоте).

Надо иметь в виду, что в формулу входит «средняя температура по больнице», то есть температура при условии идеального перемешивания воздуха по всему объему. На самом деле такого не бывает, в зависимости от направления потоков и тепловыделения конкретных устройств где-то температура будет выше, а где-то ниже средней. Причем локальное повышение температуры будет как раз вблизи самых горячих элементов, ради которых мы, собственно, эту вентиляцию и затеяли. Поэтому весьма эффективно применение воздуховодов, соединяющих вход кулера (например, процессорного) непосредственно с внешней средой либо его выход с вытяжным вентилятором. В первом случае температура процессора не будет зависеть от температуры в корпусе, во втором температура в корпусе не будет зависеть от тепловыделения процессора.

Рабочая характеристика вентилятора

Рабочая (расходная, напорная) характеристика вентилятора — это зависимость расхода от напора. Чем больше напор (противодавление в корпусе или местные потери, например в воздуховоде), тем меньше будет расход. Много таких характеристик есть, например, на сайте www.evercool.com (поэтому я и взял для примера вентиляторы именно этой фирмы). Подобную характеристику можно построить и для корпуса, только там все наоборот — чем больше давление, тем больше будет расход через вентиляционные отверстия. Наложив одну характеристику на другую, в точке их пересечения получаем рабочую точку вентилятора, показывающую реальный расход при установке вентилятора в данный корпус.

реклама

На этом рисунке представлены характеристики 120-мм вентиляторов, также для сравнения дана характеристика самого мощного из 92-мм вентиляторов (кстати, по шуму он примерно равен самому слабому из 120-мм агрегатов). Зеленым цветом показаны расчетные характеристики корпусов: светлая — характеристика «среднего» корпуса без переделок (но с заглушенным отверстием под дополнительный вентилятор на задней стенке, если он там не установлен), темная — характеристика этого корпуса с увеличенной вдвое площадью вентиляционных отверстий (как этого добиться, см. статью «Вентиляция корпусов — мифы и реальность»).

Допустим, корпус охлаждается только одним вентилятором БП, и нужно выбрать, какой вентилятор для этого лучше подходит (это вполне жизненная задача для владельцев десктопов и тауэров с боковым расположением БП). Мы видим, что максимальная производительность у 120-мм вентиляторов высокая, но она быстро падает с ростом напора, и в определенный момент вперед вырывается 92-мм вентилятор. В стандартном корпусе он лишь чуть-чуть уступает самому мощному из 120-мм (точки 1 и 2), заметно опережая два других (точки 3,4). По сравнению с равношумным 12025L 92-мм вентилятор обеспечивает на четверть большую производительность (27 CFM против 22 CFM), а по сравнению с близким по производительности 12025H «малыш» на 4 дБА (в полтора раза) тише. Очевидно, что в данном случае 92-мм вентилятор выглядит предпочтительнее, чем любой из 120-мм.

Теперь откроем слоты или увеличим площадь вентиляционных отверстий каким-нибудь другим способом (характеристикой корпуса станет темно-зеленая кривая). Видно, что эта мера для самого слабого 120-мм вентилятора эффективнее (точки 3->5), чем его замена на самый сильный без изменений корпуса (точки 3->2). Несмотря на заметную прибавку (около 60%), производительность 120-мм вентиляторов все равно остается вдвое меньше максимальной, в то время как у их 92-мм коллеги она почти достигла пика (замечу, что и в этом случае он остается производительнее «младших» 120-мм). Теперь уже реально обеспечить расход в 40-45 CFM, чего вполне достаточно для хорошего охлаждения умеренно разогнанной системы. Таким образом, и в этом случае 92-мм «карлсон» остается оптимальным выбором по соотношению производительность/шум, не говоря уже о цене. Использование 120-мм вентилятора оправдано только в том случае, если еще больше увеличить площадь вентиляционных отверстий (например, открыванием свободного 5-дюймового отсека, пунктирная линия на графике).

Параллельное и последовательное включение вентиляторов

При параллельном включении вентиляторов (то есть когда они все работают в одну сторону) их расходы складываются. При последовательном включении (когда один работает на вдув, другой на выдув или они установлены друг за другом, например в некоторых БП) складываются их напоры. Для иллюстрации на рис.3 показаны характеристики вентилятора 9225M (красная линия), двух таких же вентиляторов при последовательном (синяя линия) и параллельном (коричневая линия) включении.

реклама

Сформулируем еще одну типовую задачу. Есть стандартный корпус с двумя отверстиями под дополнительные вентиляторы: одно на задней стенке (на выдув), второе на передней (на вдув). В БП установлен вентилятор 9225М, необходимо установкой еще одного такого же обеспечить наибольшее снижение температуры в корпусе.

Сначала найдем расход в исходном корпусе, он равен 24 CFM (точка 1). Добавление переднего (точка 5) вентилятора прибавляет 5 CFM, а заднего (точка 4) 4 CFM. То есть передний вентилятор (редкий случай!) оказывается даже эффективнее заднего, но абсолютная прибавка все равно мизерна. Кстати, если передний вентилятор закрыт развитой декоративной решеткой (что скорее правило, чем исключение), из-за потерь напора в ней он скорее всего уступит заднему.

Теперь откроем слоты в корпусе. Без дополнительного вентилятора прибавка будет 11 CFM (это вдвое больше, чем при установке второго вентилятора в исходный корпус, точка 2), установка переднего вентилятора практически ничего не дает (точка 3), а установка заднего (точка 6) прибавит 22 CFM к исходному. Последний вариант дает самую большую прибавку, фактически удваивая исходный расход. Такая конфигурация оказывается чуть эффективнее и тише на 3 дБА, чем установка самого мощного 120-мм вентилятора «в гордом одиночестве». Возможности для дальнейшего улучшения вентиляции надо искать, как и в первом примере, на пути увеличения площади вентиляционных отверстий.

В заключение посмотрим, что дает любимое развлечение «самоделкиных» — врезка 120-мм вентилятора на вдув в боковую стенку. С точки зрения вентиляции это мероприятие имеет два последствия. Во-первых, добавляется новый последовательно включенный вентилятор, его характеристика (в сумме с имеющейся парой 9225М на выдув) показана на рис.3 коричневой штриховой линией. Во-вторых, в корпусе появляется новая дыра изрядного размера, и теперь корпус уже описывается на том же рисунке штриховой зеленой линией. На их пересечении (точка 10) находим расход- 75 CFM. Подставив это значение в формулу, получим падение температуры — 4-5 градусов. А если этот вентилятор выключить? Тогда мы перемещаемся в точку 9, расход падает на 10%, а температура в корпусе вырастет (о ужас!) аж на полградуса. Иными словами, эффект от дыры тут намного больше, чем от стоящего в ней вентилятора. Правда, вентилятор обычно дует на процессор, снабжая его свежим воздухом, поэтому повышение температуры процессора при выключении вентилятора будет более заметным. Однако для этой цели вполне хватит и самого слабого из 120-мм вентиляторов (особенно если снабдить его хотя бы коротким воздуховодом), свои уши тоже надо поберечь.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector