Руководство: сколько ядер нужно процессору в вашем компьютере

Влияние количества ядер на производительность процессора

Отвечая на вопрос, на что влияет количество ядер в процессоре, хочется сразу сказать – на производительность компьютера. Но это настолько сильное упрощение, что оно даже в какой-то момент становится ошибкой. Ладно бы пользователи просто заблуждались и ничего не теряли. Проблема в том, что неправильное понимание сути многоядерности приводит к финансовым потерям. Пытаясь увеличить производительность, человек тратит деньги на процессор с большим количеством ядер, но не замечает разницы.

Ядро – это основная составляющая ЦП. Именно здесь производятся все операции и вычисления. Если ядер несколько, то они «общаются» между собой и с другими компонентами системы посредством шины данных. Количество таких «кирпичиков», в зависимости от поставленной задачи, влияет на общую производительность процессора. В целом, чем их больше, тем выше скорость обработки информации, но на деле имеются условия, при которых многоядерные CPU уступают своим менее «упакованным» собратьям.

Физические и логические ядра

Многие процессоры Intel, а с недавнего времени и AMD, способны производить расчеты так, что одно физическое ядро оперирует двумя потоками вычислений. Эти потоки называются логическими ядрами. Например, мы можем увидеть в CPU-Z вот такие характеристики:

Отвечает за это технология Hyper Threading (HT) у Intel или Simultaneous Multithreading (SMT) у AMD. Здесь важно понять, что добавленное логическое ядро будет медленнее физического, то есть полноценный четырехъядерный ЦП мощнее двухъядерного того же поколения с HT или SMT в одних и тех же приложениях.

Игровые приложения построены таким образом, что вместе с видеокартой над расчетом мира трудится и центральный процессор. Чем сложнее физика объектов, чем их больше, тем выше нагрузка, и более мощный «камень» лучше справится с работой. Но не стоит спешить покупать многоядерного монстра, так как игры бывают разные.

Старые проекты, разработанные примерно до 2015 года, в основном не могут загрузить больше 1 – 2 ядер из-за особенностей кода, написанного разработчиками. В этом случае предпочтительнее иметь двухъядерный процессор с высокой частотой, чем восьмиядерный с низкими мегагерцами. Это лишь пример, на практике современные многоядерные ЦП имеют довольно высокую производительность на ядро и в устаревших играх работают хорошо.

Одной из первых игр, код которой способен выполняться на нескольких (4 и более) ядрах, загружая их равномерно, стала GTA 5, выпущенная на ПК в 2015 году. С тех пор большинство проектов можно считать многопоточными. Это значит, что у многоядерного процессора есть шанс не отстать от своего высокочастотного коллеги.

В зависимости от того, насколько хорошо игра способна использовать вычислительные потоки, многоядерность может быть как плюсом, так и минусом. На момент написания данного материала «игровыми» можно считать CPU, имеющие от 4 ядер, лучше с гиперпоточностью (см. выше). Впрочем, тенденция такова, что разработчики все более оптимизируют код под параллельные вычисления, и малоядерные модели скоро безнадежно устареют.

Программы

Здесь все немного проще, чем с играми, так как мы можем подобрать «камень» для работы в конкретной программе или пакете. Рабочие приложения также бывают однопоточными и многопоточными. Первым нужна высокая производительность на ядро, а вторым большое количество вычислительных потоков. Например, с рендерингом видео или 3D сцен лучше справится многоядерный «проц», а Фотошопу необходимо 1 – 2 мощных ядра.

Операционная система

Количество ядер влияет на быстродействие ОС только в том случае, если равняется 1. В остальных случаях системные процессы не нагружают процессор настолько, чтобы были задействованы все ресурсы. Мы сейчас не говорим о вирусах или сбоях, способных «положить на лопатки» любой «камень», а о штатной работе. Впрочем, вместе с системой может быть запущено много фоновых программ, которые также потребляют процессорное время и дополнительные ядра не будут лишними.

Универсальные решения

Сразу отметим, что многозадачных процессоров не бывает. Есть только модели, способные показывать неплохие результаты во всех приложениях. В качестве примера можно привести шестиядерные CPU с высокой частотой i7 8700, Ryzen R5 2600 (1600) или более пожилые аналогичные «камни», но даже они не могут претендовать на универсальность, если вы параллельно с играми активно работаете с видео и 3D или занимаетесь стримингом.

Заключение

Резюмируя все написанное выше, можно сделать следующий вывод: количество ядер процессора — это характеристика, показывающая общую вычислительную мощность, а вот, каким образом она будет использоваться, зависит от приложения. Для игр вполне сгодится четырехъядерная модель, а для высокоресурсных программ лучше выбрать «камень» с большим количеством потоков.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Теперь стоит сказать про AMD. Список «камушков» от данной компании огромен, смысла перечислять все нет, поскольку большинство из моделей уже попросту устарели. Стоит, пожалуй, отметить новое поколение, которое в некотором смысле «копирует» «Интел» — Ryzen. В данной линейке также присутствуют модели с номерами 3, 5 и 7. Главное отличие от «синих» у Ryzen заключается в том, что самая младшая модель уже сразу предоставляет полноценные 4 ядра, а у старшей их не 6, а целых восемь. Кроме этого, и количество потоков меняется. Ryzen 3 — 4 потока, Ryzen 5 — 8-12 (в зависимости от кол-ва ядер — 4 или 6) и Ryzen 7 — 16 потоков.

процессор intel и amd

Стоит упомянуть и о еще одной линейке «красных» — FX, которая появилась в 2012 году, и, по сути, данная платформа уже считается устаревшей, но благодаря тому, что сейчас все больше и больше программ и игр начинает поддерживать многопоточность, линейка Vishera вновь обрела популярность, которая наряду с низкими ценами только растет.

Ну а что касается споров касательно частоты процессора и количества ядер, то, по сути, правильнее смотреть в сторону второго, поскольку с тактовыми частотами уже давно все определились, и даже топовые модели от «Интел» работают на номинальных 2. 7, 2. 8, 3 Ггц. Помимо этого, частоту всегда можно поднять при помощи оверклокинга, но в случае с двухъядерником это не даст особого эффекта.

Краткие ответы и советы

Если вы подбираете процессор для компьютера, который будет выполнять обычную офисную работу, серфить в интернете и воспроизводить видео, хватит четырехъядерного чипа. Даже самые скромные Intel Core i3 и Ryzen 3 последних поколений — четырехъядерные. Конечно, можно выбрать совсем уж бюджетный Celeron или Athlon — в рамках этих линеек до сих выпускают сверхдешевые CPU, которые подойдут для ПК, исполняющего роль «печатной машинки». Но лучше все-таки обратить внимание на четырехъядерные варианты — с ними точно не будет никаких проблем.

Для домашнего ПК, который используется в том числе и для игр, оптимальный вариант в 2019 году — это шестиядерный процессор. Да, многие четырехъядерные CPU (особенно Core i5 и Core i7 с поддержкой Hyper Threading, о которой поговорим чуть дальше) вполне справятся с большинством современных игр благодаря достаточно высокой тактовой частоте, но лучше сделать хоть какой-то задел на будущее. Ну а восемь ядер — это и вовсе идеальный вариант, который позволит не беспокоиться о замене процессора (и материнской платы — это немаловажно!) еще несколько лет.

Рабочие станции, которые выполняют серьезные вычисления (3D-рендеринг, нейросети, кодирование видео, математика, профессиональная работа с фотографиями и так далее), обычно оснащаются так называемыми HEDT-процессорами (High-end Desktop). Каждое их ядро не так быстро, как ядра топовых процессоров для игровых ПК, но этих ядер обычно больше. Благодаря тому, что практически все профессиональные пакеты ПО отлично справляются с задачей распределения вычислений на процессоре с большим количеством ядер, итоговая производительность в этом случае выше.

В любом случае, при выборе конкретной модели нужно опираться не только на количество ее ядер, но и на результаты независимых тестов производительности — именно в тех задачах, в которых вы будете задействовать свой ПК.

Отдельно нужно рассказать о ноутбуках. Из-за ограничений, которые накладывают компактные корпусы, охладить компоненты которых далеко не так просто, как в полноценных корпусах настольных ПК, их процессоры заметно слабее и часто используют меньше ядер. Двухъядерные Core i3 в бюджетных рабочих лаптопах — это вполне нормально. Впрочем, в этом году в продаже начали появляться очень привлекательные модели с Ryzen, у которых довольно производительных ядер уже как минимум четыре.

Руководство: сколько ядер нужно процессору в вашем компьютере

Потоки или ядра?

Центральный процессор – один из ключевых компонентов системы, влияющих на ее производительность в целевых задачах, а также на удобство использования компьютера. Часто у пользователей, желающих собрать систему, возникает вопрос: на что ориентироваться при выборе ЦП? Стоит ли переплачивать за дополнительные потоки/виртуальные ядра?

Ответ зависит от предполагаемых сценариев использования. В большинстве игр прирост производительности от гиперпоточности окажется минимальным или даже нулевым, а вот добавление физических ядер скажется на частоте кадров явно положительно. Разумеется, если движок игры способен распараллеливать вычисления на такое количество ядер. Многие игры, выпущенные в предыдущие годы, способны работать только с 2-4 ядрами — остальные будут простаивать или заниматься фоновыми программами.

Наибольшую выгоду виртуальные ядра приносят в рабочих задачах, подверженных эффективному распараллеливанию. К ним относятся, например, архивация файлов, обработка фотографий, рендеринг видео, моделирование. Таким образом, польза дополнительных потоков для компьютера, который будет использоваться в первую очередь для игр или медиа, сомнительна. Впрочем, если параллельно с играми будут выполняться и другие задачи, такие как стриминг, запись/обработка видео, скачивание/раздача файлов при помощи торрент-клиента, антивирусная проверка, она возрастает. В подобных ситуациях виртуальные ядра помогают снять фоновую нагрузку с физических.

Впрочем, кратного роста вычислительной мощи ждать все равно не стоит, и для типичных домашних сценариев использования переплата за виртуальные ядра часто будет неоправданной. Другое дело – если компьютер используется для профессиональной деятельности, и применяются программы, хорошо работающие с гиперпоточностью – прирост в производительности при правильной оптимизации может составлять десятки процентов.

Подытожим : если речь идет о домашнем игровом или мультимедийном компьютере, не стоит ждать чудес от виртуальных ядер, и, если за них придется доплатить ощутимую сумму, лучше рассмотреть вариант с дополнительными физическими, или вложить деньги в другие комплектующие. Если же система будет использоваться для работы – прирост может быть значительным, поэтому стоит ознакомиться с тестами гиперпоточных ЦП для конкретного вида задач.

Что такое сокет

Важным моментом, который нужно учитывать при выборе процессора, является то, для установки в сокет какого типа он предназначен.

Сокет (socket, разъем центрального процессора) – это щелевой или гнездовой разъём на материнской плате, в который устанавливается процессор. Каждый процессор можно установить только на материнскую плату с подходящим разъемом, имеющим соответствующие размеры, необходимое количество и структуру контактных элементов.

Каждый новый сокет разрабатывается производителями процессоров, когда возможности старых разъемов уже не могут обеспечить нормальную работу новых изделий. Для процессоров Intel длительное время использовался сокет LGA775 (процессоры Pentium 4, Pentium D, Celeron D, Pentium EE, Core 2 Duo, Core 2 Extreme, Celeron, Xeon серии 3000, Core 2 Quad). Затем были введены сокеты LGA1366, LGA1156, LGA1155 (процессоры i7, i5, i3) и др. Разъемы для процессоров от AMD за последние десятилетия также изменились — AM2, AM2+, AM3, AM4 и т.д. О более ранних сокетах, думаю, смысла вспоминать нет, поскольку компьютеры на их основе – уже раритет.

Важно. Если вы задумали модернизировать старый компьютер путем приобретения более производительного процессора, убедитесь, что по сокету он подойдет к вашей старой материнской плате. Иначе однозначно придется менять и ее. Но даже если по сокету процессор подходит, не факт что материнская плата будет с ним работать. Большое значение имеет также системная логика материнской платы («чипсет»). Нужно убедиться, что он поддерживает процессоры с такой архитектурой. Подробнее о разъеме центрального процессора и соответствующих чипсетах материнских плат можно узнать здесь.

Многопоточность и все о ней

Многие наверняка слышали выражения из серии «2 потока», «4 потока», «8 потоков» и т.д. При этом физических ядер зачастую было в 2 раза меньше.

Эта технология имеет название HyperThreading (Intel) или SMT (AMD).

Многопоточность у красных появилась совсем недавно, с выходом чипов Ryzen на совершенно новом техпроцессе. Что это такое – тема отдельной статьи.

Цель функции заключается в том, что на 1 ядро может одновременно обрабатывать несколько потоков данных. Пока первый поток простаивает, а второй занимается вычислением, запущенное приложение может воспользоваться вакантной логической мощью для своих целей. В результате, прерывания случаются гораздо реже, а вы не ощущаете тормозов и прочих неудобств при работе.

Недостаток технологии заключается в следующем:

  • оба потока обращаются к единой кэш-памяти 2 и 3 уровней;
  • тяжелые вычислительные процессы могут вызвать конфликт в системе.

Если очень грубо, то все кирпичи с одного места на другое можно перенести в одной руке (1 поток), либо в двух (2 потока), но человек при этом один (1 ядро) и устает одинаково при любых условиях, хоть его производительность фактически увеличивается вдвое. Иными словами, мы упираемся в производительность ЦП, а конкретней в его частоту.

Знакомы с понятием Turbo Boost? Процесс кратковременно повышает частоту процессора на несколько сотен мегагерц в особо сложных сценариях, чтобы вы не испытывали проблем при обработке сложных данных.

Операционные системы и топология

Операционные системы предоставляют информацию о топологии логических процессоров приложениям с помощью своих собственных интерфейсов.

В Linux информация о топологии содержится в псевдофайле /proc/cpuinfo , а также выводе команды dmidecode . В примере ниже я фильтрую содержимое cpuinfo на некоторой четырёхядерной системе без HT, оставляя только записи, относящиеся к топологии:

В FreeBSD топология сообщается через механизм sysctl в переменной kern.sched.topology_spec в виде XML:

В MS Windows 8 сведения о топологии можно увидеть в диспетчере задач Task Manager.

Также их предоставляет консольная утилита Sysinternals Coreinfo и API вызов GetLogicalProcessorInformation.

Сферы применения многопоточных процессоров

С развитием компьютерных технологий перечень программ, использующих многопоточность, неуклонно растет. Это дает огромный простор разработчикам для создания нового софта и игр. Например, сейчас каждый современный triple-A проект оптимизирован для многопоточных процессоров, что позволяет наслаждаться игрой, получая высокий уровень fps на многоядерном CPU.

Еще больше распространены многоядерные системы в среде разработчиков. Программы для 3D-моделирования, монтажа видео и создания музыки требуют параллельного выполнения большого количества задач, с чем хорошо справляются системы с Hyper-Threading или SMT. В операционных системах мощность одного потока может тратиться на фоновые задачи (Skype, браузер, мессенджер), в то время как остальные задействуются для тяжелой игры или программы.

Но далеко не всегда увеличение количества потоков означает увеличение общей производительности. Почему же SMT процессоры порой уступают немногопоточным собратьям? Дело в программной поддержке. Иногда плохо оптимизированные программы не могут отличать логический поток от настоящего ядра, из-за чего на одно ядро может попасть две тяжелых задачи и замедлить работу. Тем не менее, подобные технологии имеют огромный потенциал, главное — грамотно реализовать его на программном уровне.

Adblock
detector