Работу за компьютером исключили из числа вредных факторов для медосмотров работников

Монитор / экран, который гаснет из-за статического электричества в моем кресле

Я прихожу к вам сегодня по довольно особой просьбе, но вы можете быть лучшими людьми, чтобы ответить на нее.

Я разработчик, и у меня есть стойка Ikea (автоматическая) на открытом пространстве.

У меня большая проблема со статическим электричеством: когда я встаю со стула, он закрывает некоторые экраны, иногда на моем столе, иногда на экранах моих коллег. Он мигает и показывает черный экран в течение нескольких секунд.

Подробности о том, как воспроизвести эту проблему:

  • Быть заряженным от статического электричества.
  • Касайтесь или не касайтесь стола или чего-либо еще (это ничего не меняет)
  • Просто встаньте со стула, и экраны выключатся.

Ничто не связано со мной или стулом. Это действительно странно.

Работу за компьютером исключили из числа вредных факторов для медосмотров работников

Минздрав России совместно с Минтрудом России внесли долгожданные поправки в Перечень вредных и (или) опасных производственных факторов, при наличии которых проводятся обязательные предварительные и периодические медицинские осмотры (обследования) (Приказ Министерства труда и социальной защиты РФ и Министерства здравоохранения РФ от 3 апреля 2020 г. №№ 187н, 268н). Изменения коснулись пункта 3.2.2.4, устанавливающего в качестве вредного фактора электромагнитное поле широкополосного спектра частот, в результате чего из нормы было убрано упоминание работы за компьютером:

Старая редакция Новая редакция
электромагнитное поле широкополосного спектра частот от ПЭВМ (работа по считыванию, вводу информации, работа в режиме диалога в сумме не менее 50% рабочего времени) электромагнитное поле широкополосного спектра частот (5 Гц — 2 кГц, 2 кГц — 400 кГц) (при превышении предельно допустимого уровня)

Отметим, что вопрос о том, является ли сама по себе работа с ПЭВМ в течение не менее 50% рабочего времени основанием для направления работника на медицинский осмотр, долгое время вызывал ожесточенные споры.

Многие специалисты полагали, что факторы, поименованные в Перечне, учитываются как основания для проведения медицинских осмотров только тогда, когда по уровню своего воздействия отнесены к вредным и (или) опасным классам. При этом на рабочих местах, на которых работники исключительно заняты на персональных электронно-вычислительных машинах (персональных компьютерах), неионизирующее излучение в принципе не идентифицируется как вредный фактор. Иными словами, работа никогда не будет признана вредной из-за того, что работник трудится за компьютером более 50% рабочего времени. А значит, и медосмотры такого работника проводить не нужно.

В поддержку данной позиции высказывались многие органы исполнительной власти: Минздрав, Роспотребнадзор, ФМБА, Минэкономразвития. Даже Роструд в 2017 году присоединился к лагерю ее сторонников, заключив, что при наличии результатов СОУТ, подтверждающих оптимальные или допустимые условия труда на рабочем месте, у работодателя не возникает обязанности направлять трудящихся более 50% рабочего времени за компьютером работников для прохождения медосмотров (хотя ранее данное ведомство занимало иную позицию).

Тем не менее, Минтруд России последовательно настаивал на необходимости проведения медосмотров работающих за компьютером не менее 50% рабочего времени работников независимо от прочих обстоятельств. В судах же можно было встретить как одну, так и другую точки зрения.

После вступления в силу рассматриваемых поправок (а это произойдет 24 мая 2020 года) вопрос можно будет считать разрешенным. Правда, указание на необходимость прохождения обязательных медосмотров лицами, работающими с ПЭВМ более 50% рабочего времени (профессионально связанными с эксплуатацией ПЭВМ), сохранится еще в п. 13.1 СанПиН 2.2.2/2.4.1340-03. Однако СанПиН не является документом, которым могут устанавливаться основания для проведения обязательных медицинских осмотров.

А вот проблема с иными случаями, когда на рабочих местах работника присутствуют поименованные в Перечне вредные факторы, но уровень их воздействия недостаточен, чтобы отнести условия труда к вредным или опасным, по-прежнему остается актуальной. К сожалению, внесенные Минздравом и Минтрудом поправки в решении данного вопроса никак не помогают.

Где искать причину

Проблемы электрического свойства могут наблюдаться из-за окисленных контактов разъемов. Попадание влаги и грязи ухудшают токопроводимость контактов, а как следствие – ошибки в работе ЭУР.

Неисправности элуктрического усилителя руля из-за окисленных контактов проводки

Сбои в электронике могут быть по причине потери сигнала от датчика момента. Например на отечественных автомобилях слабо пропаяны контакты. Со временем они «отходят», начинаются проблемы с электроусилителем. Достаточно их почистить и хорошо пропаять и неисправность пропадет. Если не работает датчик скорости, то ЭУР будет выдавать ошибку и отказываться работать.

Предохранитель. Даже если он на вид целый, нужно внимательно его осмотреть. Были случаи, когда усилитель отключался и выдавал ошибку 1058 «Двигатель, замыкание фазных обмоток» (актуально для ВАЗовских моделей) по причине подгоревших контактов предохранителя. Чистка контактных поверхностей или замена предохранителя устраняла неисправность электроусилителя.

Подгоревшие контакты предохранителя могут стать причиной неисправности электроусилителя

Причина выхода из строя усилителя может быть в механической части. Это касается редуктора и рулевой рейки. Первый может подклинивать из-за попадания воды и грязи в планетарные шестерни или их физических разрушений – читайте «Конструкция и принцип работы электроусилителя руля».

Повреждение пыльников рейки приводит к попаданию во внутрь воды, пыли и грязи. Это разрушает рейку изнутри, повреждаются подшипники, заклинивает рулевой механизм. Были случаи, когда слизывались гребни на рейки, «червяк» вала прокручивается, теряется связь между колесами авто и рулем.

Поврежденные пыльники рулевой рейки могут привезти к поломке электроусилителя руля

Как выбрать монитор — характеристики

Диагональ

В первую очередь определитесь с диагональю. Чем больше она будет, тем дальше придется сидеть, чтобы было комфортно работать. Поэтому лучше подходить к выбору диагонали по следующим параметрам:

Дом и работа: 20-24 дюйма. Самый оптимальный вариант и для работы, и для развлечений. Глаза разбегаться не будут, монитор будет достаточно большой и будет гармонично смотреться за любым столом.

Игры и развлечения: 24-27 дюйма. Уже довольно большие модели и место на столе придется поискать. Отличный вариант для игр, работы с графикой и видео монтажом. Смотреть кино и другие медиа — тоже одно удовольствие.

Важно! Помните, если большой монитор от глаз будет находится в 50-60см. то глаза от большой диагонали будет разбегаться и придется уже часто вертеть головой. Что может оказаться неудобно. Но, все равно это, конечно, дело вкуса.

От 27 дюймов. Берут редко, неходовые модели. Чаще берут для творческой работы фотографы, дизайнеры, игроки и те, кто хочет просто найти замену своему телевизору.

Вообще, золотая середина, это диагональ около 24 дюймов и не маленький, и не огромный. Но смотрите все равно сами, когда будете непосредственно перед ним. У всех людей разное зрение и понятие размера.

Разрешение экрана

Разрешение экрана следует выбирать исходя из диагонали экрана. Тут все просто.

По 24 дюйма — Full HD. Сто процентов, не больше. Особой четкости если возьмете 2K и 4K не увидите, а вот FPS в играх просядет очень ощутимо. Нет еще такого железа, чтобы оно тянуло игры на высоком разрешении. Но, многие свидетели 2-4К могут сказать вам обратное, так, что лучше посмотреть на картинку вначале самому.

От 24 и выше. Тут уже можно подумать о 2K и более высоких. Но еще раз вспомните, чем выше разрешение, тем больше ресурсов компьютера будет требоваться для обработки графики.

Интересно! Прочитайте материал про то, что такое разрешение экрана для лучшего понимания.

На данный момент контента для 4K экрана становится все больше, но все равно не так много. И, если вы на таком мониторе запустите тот же Full HD или сайт, где картинки не высокого разрешения — они будут растягиваться и будут мыльными. Для эксперимента, если на вашем телефоне есть высокое разрешение, тот же Full HD, откройте какую-нибудь картинку маленького разрешения, которая на мониторе с таким же разрешением выглядит хорошо и увеличьте ее в физический размер 1 к 1. Сразу увидите разницу.

Чем дальше вы сидите от экрана, тем менее заметной для глаза будет разница в количестве пикселей между Full HD и выше разрешением. А вот количество Гц будет заметно всегда, об этом ниже.

Матрица

Из всех доступных моделей, лучшим будет IPS матрица. Хорошие углы обзора, точные цвета и достаточно неплохой отклик. На TN матрицах — плохие углы обзора и они дешевле, но время отклика меньше. OLED пока дорогой и помним про выгорание пикселей. Также на рынке есть VA матрицы, которые являются золотой серединой между ИПС и ТН по характеристикам.

Но, на IPS матрицах не такое маленькое время отклика, и, поэтому многие киберкотлеты используют модели с TN и реже с VA матрицей. Если хотите играть в игры, смотреть кино и серфить в интернете, а бюджета на ИПС не хватает — отличным вариантом будет VA.

ГЦ — обновление кадров

Чем больше Гц, тем более живая будет картинка. Этот параметр определяет сколько кадров в секунду способен отобразить монитор. Раньше были доступны только модели с 60 Гц, это означало, что максимально он отобразит лишь 60 кадров в секунду. Игры с ФПС более чем 60, на них будут все равно отображаться в 60 кадрах в секунду.

Сейчас особой популярности пользуются модели с 144 Гц, картинка на них плавная и качество отличное. Интересно, что в магазинах до сих пор ходят необразованные продавцы, которые могут говорить вам, что человеческий глаз не видит разницу в 60Гц и выше — остерегайтесь их, раньше они были адептами 25 кадра.

Время отклика

Стандартное время отклика, которого в принципе хватает на все: 4 — 6мс. Время отклика, это то время, через которое на экране монитора отобразится действие с компьютера. Чем ниже — тем лучше. Но и значений, указанных выше, вполне хватает для работы и для игр. 2-4мс — сейчас такие модели распространены больше всего на матрицах TN и VA.

Есть игровые модели с 1мс. Но, помните, когда покупаете вариант с низким откликом для игр, берите и соответствующие мышь и клавиатуру, у которых также будет низкое время отклика. Тогда точно сможете насладится мгновенной реакцией в играх.

Яркость и контрастность

Яркость — это количество света, который исходит от белого экрана. Чем выше показатель яркости — тем качественней будут цвета. Сейчас распространены модели с показателями от 200 до 700.

Контрастность — это соотношение яркости самой светлой точки на экране к самой темной точке. Т.е. уровень белого делится на уровень черного. Лучше всего брать с показателями от 1:1000. Чем они будут выше, тем качественней будет картинка.

Для работы с графикой лучшим вариантом будет: яркость от 500 и контрастность 1:5000.

Интересно! В остальных моментах: дизайн, есть ли встроенные динамики, USB порты и т.д. смотрите уже по своему желанию. Также обратите внимание на порты подключения к видеокарте, подойдут ли они. Но скорее да, чем нет, т.к. даже на видеокартах 10-ти летней давности есть разъемы DVI и HDMI.

В заключение

Надеюсь вам были интересна и познавательная данная статья. Это основные моменты и, то, что вообще нужно знать по этой теме. Подходите с умом к выбору данной техники, и она всегда вас будет радовать.

Методы поиска неисправностей в электронных схемах

Чаще всего люди интересуются электроникой чтобы уметь починить какой-либо прибор. Самостоятельной разработкой занимается лишь малая часть любителей. Теоретические знания хоть и дают общее понимания принципа работы компонентов, но для ремонта гораздо важнее знать методы их проверки. Мы расскажем, как найти неисправность в электронной схеме своими руками, глазами и простым инструментом.

Методы поиска неисправностей в электронных схемах

Основные способы поиска неполадки

Прежде чем провести ремонт важно определить в чем проблема – этот процесс называется диагностикой. Итак, можно выделить два этапа проверки электронных приборов:

1. Проверка работоспособности прибора. Не всегда случается так что устройство совсем «мёртвое», нужно проверить не включается прибор совсем, или включается и сразу выключается, или же не работают какие-то конкретные кнопки или функции.

Например, при ремонте LCD-мониторов встречается такая проблема как выход из строя подсветки. При этом монитор может либо не включатся совсем тогда его индикатор моргает, либо же индикатор указывает на включенное состояние, но изображения нет. В таком случае если посветить фонарём в экран можно увидеть, что изображение все-таки есть и монитор как бы работает, но он тёмный – и это только один из примеров, когда предварительная проверка упрощает диагностику.

2. Визуальный осмотр. Внешне можно определить большинство проблем с электрическим прибором. Это могут быть как просто сгоревшие компоненты – диоды, резисторы, транзисторы и конденсаторы, так и дефекты пайки или механические повреждение элементов и самой печатной платы.

3. Измерения. Если плата и детали выглядят нормально, то следует переходить к измерениям. Их проводят в основном с помощью мультиметра и осциллографа. В отдельных случаях используют специализированные приборы, типа частотомеров, логических анализаторов и прочего.

Итак, обобщенным алгоритмом поиска неисправности является:

Определение чрезмерного нагрева электронных компонентов платы;

Измерения и прозвонка мультиметром;

Использование осциллографа и других приборов;

Замена вышедшей из строя детали или блока.

Поиск неисправностей в электронных схемах

Визуальный осмотр

Визуальный осмотр следует проводить от общего к частному. Или простыми словами – осмотреть общий вид электронного устройства, сразу проверяем целостность кабелей и проводов питания. Их покров должен быть ровным и целым, без изломов и резких перегибов, шишек и других неравномерностей на оболочке быть не должно.

Визуальный осмотр

После того как вы убедились в целостности устройства, нужно его разобрать и добраться к печатной плате. Осмотр внутренностей следует начинать с проверки целостности шлейфов, проводов других межблочных соединений. Важно не порвать их еще при разборке, так как часто шлейфы идут от плат к блокам клавиш и дисплеям, закрепленным на корпусе.

Проверка целостности шлейфа

Далее проверяют целостность предохранителя в цепи питания, часто если он перегорел можно определить невооруженным взглядом. Он стоит около того места где подключается к плате шнур питания.

Проверка целостности предохранителя

После этого осматривают наличие следов нагрева или сажи на плате и поврежденные компоненты. Рассмотрим, как выглядят неисправные электронные компоненты. Например, корпуса неисправных транзисторов и сгоревших диодов разрывает или они трескаются.

Неисправные электронные компоненты

На интегральных микросхемах появляется трещина или мелкая точка. В некоторых случаях и те, и другие сгорают, оставляя в результате следы гари на плате. Обращайте внимание нет ли характерного запаха горелой изоляции. Так можно локализировать от какого элемента или участка платы исходит этот запах. Как определить сгоревшие транзисторы и микросхемы вы видите ниже.

Сгоревшие транзисторы и микросхемы

Резисторы обычно сгорают или темнеют, реже происходит обрыв резистивного слоя и деталь выглядит исправной.

Сгоревшие резисторы

Как определить сгоревшие конденсаторы? Они в основном пробивают «накоротко» между обкладками и, если стоят в силовой цепи – тогда повреждаются дорожки платы или корпус конденсатора. Если цепь была слаботочной – пробитый конденсатор просто закоротит её без видимых следов протекания больших токов. Реже трескаются корпуса конденсаторов.

Сгоревшие конденсаторы

В то время как электролитические конденсаторы можно вычислить по деформированной крышке корпуса или следам протекшего вниз электролита. На крышке конденсатора есть две диагональных борозды, она нужна чтобы корпус не разорвало в аварийной ситуации. Крышка в таком случае вздувается либо трескается. Реже выдавливает дно.

Электролитические конденсаторы

С SMD-компонентами дело обстоит несколько сложнее. Часто их крайне сложно рассмотреть на предмет целостности. Есть один метод поиска короткого замыкания в плате с SMD – это термобумага, такая бумага используется в кассовой аппарате, поэтому можно использовать любой чек. Печать на ней происходит за счет нагрева. Значит, когда вы подадите питание на плату пробитая накоротко деталь, перегреется и отпечатается на бумаге. Методику поиска неисправности с помощью термобумагивы видите на видео:

Но нужно помнить об электробезопасности и не прибегать к такому способу диагностики, если вы не уверены есть ли там опасное напряжение. Безопасно и точно это можно сделать с помощью тепловизора.

Для определения короткого замыкания по нагреву в большинстве случаев вам понадобится лабораторный блок питания или другой источник питания с ограничением тока. Если вы проводите диагностику цепей 220В – можете воспользоваться контрольной лампой, если есть КЗ, то лампа загорится в полный накал. Фактически она выступит в роли токоограничивающего резистора.

При визуальном осмотре важно определить состояние контактов всех разъёмных соединений. Они должны быть чистыми, без окислов с характерным медным или серебряным блеском. Если контакты не слишком сильно окислены – их можно почистить канцелярским ластиком или деревянной стороной спички.

В более запущенных случаях их нужно залудить, таким образом оловом вы восстановите контактную поверхность. Самый худший вариант, когда ни чистить, ни лудить нечего, тогда нужно либо менять плату целиком, либо припаивать к дорожкам платы проводники и соединять через них.

Проверка состояния контактов

Также внимательно осматриваете дорожки печатной платы, они могут перегорать, трескаться при изгибе платы, отслаиваться и окисливаться. Их восстанавливают либо каплей олова, либо кусочком провода, когда дорожки расположены слишком плотно – их замещают куском провода – подойдет тонкий обмоточный провод либо жила витой пары, припаивая их к началу и концу печатной дорожки.

Проверка дорожек печатной платы

Подведем итоги, узнайте 5 советов по внешней диагностике электроники:

1. Большинство неисправностей можно найти при внешнем осмотре;

2. Внимательно проверяйте качество пайки и наличие микротрещин;

3. Уделяйте особое внимание силовым цепям;

4. Вздутые электролитические конденсаторы в большинстве случаев являются как причиной полной неработоспособности, так и неработоспособности каких-то отдельных функций;

5. Не всегда внешне исправная деталь является таковой.

Измерения и прорзвонка цепей

Если внешний осмотр не принес результатов, то следует проводить ряд измерений. Если устройство не подаёт признаков жизни и:

У него сгорел предохранитель – то с помощью мультиметра прозваниваем цепь и находим на каком участке у нас короткое замыкание. Режим прозвони в большинстве мультиметров совмещен с режимом проверки диодов (на рисунке ниже);

Если предохранитель исправен – проверяем вольтметром приходит ли питающее напряжение на плату.

Измерения и прорзвонка цепей

Если напряжение не приходит, то проблема скорее всего в кабеле, определить это можно прозвонив кабель от вилки до места подключения к печатной плате.

Не включайте блок питания напрямую в сеть, если вы не уверены, что устранили все неполадки. Подключите последовательно лампочку накаливания, о которой мы упоминали в середине статьи.

Следующий шаг – проверка цепи питания, для этого включаем устройство и проверяем наличие выходных напряжений блока питания. Учтите, что бывают случаи, когда без нагрузки блок питания не включается. Тогда проверяем исправность блока питания, её начинают с проверки диодного моста, мы рассматривали этот процесс подробно в статье – Как проверить диодный мост

После того как вы убедились в исправности диодного моста следует проверить приходит ли напряжение на ШИМ контроллер. Если нет, то искать, обрыв на плате, если приходит, то методика его проверки изображена на видео ниже:

Также следует по блокам проверить источник питания. Об этом вы можете почитать в статье о ремонте блоков питания для светодиодных лент.

Дальнейшая диагностика платы электронного устройства заключается в пошаговом измерении параметров каждого из компонентов и сравнение их с номинальными величинами. Задаче сильно упрощается если у вас есть схема ремонтируемого устройства.

Если у вас есть осциллограф диагностика сильно упростится, так как проверка сигналов ШИМ, на выходе контроллера и на базах или затворах транзисторов нормально возможна лишь таким образом. Как пользоваться осциллографом описано в статье Что можно сделать с помощью осциллографа и ряде других статей нашего сайта из тематического раздела Практическая электроника.

Заключение

Ремонт электроники – это не только знания принципа работы элементов, но и интуиция, опыт и удача. Главное помнить при ремонте о технике безопасности – не следует трогать плату источников питания, если на неё подано напряжение. Разряжайте фильтрующие конденсаторы блоков питания, поскольку на их выводах может быть напряжение до 300 вольт. А также при диагностике цепей с интегральными микросхемами – лучше сразу ищите техническую документацию к ним, её можно найти по запросу «datasheet название микросхемы».

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector