Сравнение характеристики поколений эвм
Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Микропроцессор — это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера — процессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ. МикроЭВМ относятся к машинам четвертого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.
Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры (ПК). Первый ПК появился на свет в 1976 году в США. С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей человеческой деятельности.
Другая линия в развитии ЭВМ четвертого поколения, это — суперкомпьютер. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Суперкомпьютер – это многопроцессорный вычислительный комплекс.
Характеристики | Поколения ЭВМ | |||
I | II | III | IV | |
Годы применения | 1948-1958 | 1959-1967 | 1968-1973 | 1974-1982 |
Элементная база | Лампы | Транзистор | МИС | БИС |
Размеры | Значительные | Меньше размеров I поколения ЭВМ | Меньше размеров I и II поколений ЭВМ | Компактные |
Количество ЭВМ в мире | Десятки | Тысячи | Десятки тысяч | Миллионы |
Быстродействие | 10-20 тыс. операций в секунду | 100-1000 тыс. операций в секунду | 1-10 млн. операций в секунду | 10-100 млн. операций в секунду |
Объём оперативной памяти | 2 Кбайта | 2-32 Кбайта | 64 кбайта | 2-5 мбайт |
Типичные модели | МЭСМ, БЭСМ-2 | БЭСМ-6, Минск-2 | IBM-360, IBM-370, ЕС ЭВМ, СМ ЭВМ | IBM-PC, Apple |
Носители информации | Перфокарта, перфолента | Магнитная лента | Диск | Гибкий и лазерный диски |
«Сравнительные характеристики поколений ЭВМ»
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Студент – человек, постоянно откладывающий неизбежность. 10824 – | 7386 – или читать все.
Появлению современных компьютеров, которыми мы привыкли пользоваться, предшествовала целая эволюция в развитии вычислительной техники. Согласно распространенной теории, развитие индустрии ЭВМ шло на протяжении нескольких отдельных поколений.
Современные эксперты склонны считать, что их шесть. Пять из них уже состоялись, еще одно – на подходе. Что именно под термином «поколение ЭВМ» понимают IT-специалисты? Каковы принципиальные различия между отдельными периодами развития вычислительной техники?
Первое поколение ЭВМ (1948 — 1958 гг.)
Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, «Сетунь», БЭСМ-2, «Раздан». Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2—3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам). Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.
Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличело емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:
и ряд других ЭВМ.
ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20—30 тысяч операций в секунду и оперативную память—соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6, обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый).
Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков.
Была достигнута уже величина времени доступа 1х10-6 с, хотя большая часть элементов вычислительной машины еще была связана проводами.
Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались.
Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.
Как работали эти агрегаты
Сотрудники, которые были приписанными к данной машине, постоянно находились возле нее и осуществляли наблюдение за работоспособностью электронных ламп. Но, как только перегорала хотя бы одна лампа, ENIAC сразу же поднимался, и наставали хлопоты: все в спешке осуществляли поиск сгоревшей лампы. Главной причиной (может быть, и не точной) очень частой замены ламп была следующая: тепло и свечение ламп привлекали мотыльков, они залетали внутрь машины и способствовали возникновению короткого замыкания. Таким образом, 1 поколение ЭВМ было крайне уязвимым относительно внешних условий.
Если вышесказанное является правдой, то термин «жучки» («баги»), под которым подразумеваются ошибки в программном и аппаратном оборудовании компьютерной техники, набирает уже новое значение. Когда все лампы находились в рабочем состоянии, инженерный персонал мог сделать настройку ENIAC на какую-либо задачу, изменив вручную подключения 6 000 проводов. Все провода нужно было снова переключать, если требовалась задача другого типа.
На каких элементах построены, устройство, структурная схема
В электронных вычислительных устройствах II поколения использовались биполярные транзисторы – расположенные последовательно слои эмиттера, базы и коллектора.
Сопротивление в полупроводниках зависит от температуры, освещения или примесей. В триодах использовали полупроводники с разными проводимостями примесей.
Примеси делятся на донорные и акцепторные. Донорные примеси образуют полупроводники n-типа с «лишними» электронами. Акцепторные примеси образуют полупроводники p-типа с «лишними» положительно заряженными частицами – «дырками». Заряд в «дырках» равен заряду в электроне.
При взаимодействии полупроводников различного типа, электроны из полупроводника типа n переходят в полупроводник типа p, а «дырки» из полупроводника p-типа – в полупроводник n-типа. Таким образом пограничный слой полупроводников насыщается «чужими» частицами. На этом перемещение «дырок» и электронов завершается образованием запирающего слоя.
При подаче на полупроводник типа n отрицательного напряжения, а на полупроводник типа p – положительного, запирающий слой разрушается. После этого процесс движения электронов и дырок запускается вновь. При подаче положительного напряжения на полупроводник n-типа и отрицательного на полупроводник p-типа запирающий слой увеличивается.
Пример: если на коллектор подается логическая единица в 5 вольт, при положительном напряжении на базу на эмиттере получится логическая единица в 5 вольт. При отрицательном напряжении или отсутствии напряжения на базе на выходе получится логический ноль в виде напряжения менее 1 вольта.
УВв – устройство ввода;
УВыв – устройство вывода;
ОЗУ – оперативное запоминающее устройство;
АЛУ – арифметико-логическое устройство;
УУ – устройство управления;
ВЗУ – внешнее запоминающее устройство.
Принцип работы триодов и электронных ламп схож. Использование транзисторов сделало компьютеры второго поколения производительнее, надежнее, компактнее и дешевле, чем устройства первого поколения.
ЭВМ четвертого поколения
Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.
Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.
С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.
Изобретатель и краткая история
После создания суперкомпьютера или компьютера первого поколения. IBM начала создавать новый компьютер под названием Stretch, и ученый по имени Sprery Rand также попытался создать новый компьютер под названием LARC, Эти компьютеры тогда назывались компьютерами второго поколения.
Первоначально открытие компьютеров второго поколения началось с открытия транзистора в 1948 году. Какое значение имеет транзистор? Этот транзистор используется в качестве замены вакуума в электронном оборудовании, установленном в компьютере, поэтому при использовании транзисторов размер компьютера будет меньше, чем у компьютеров первого поколения.
Что такое компьютер второго поколения?
Компьютеры второго поколения были разработаны с использованием транзисторов в качестве основного компонента вместо электронных ламп, используемых в первом поколении. Транзисторы были намного лучше электронных ламп, потому что транзисторы были относительно небольшого размера, быстродействующими и дешевыми. Кроме того, транзистор потреблял меньше энергии и позволял компьютеру быть более надежным.
Хотя транзистор был изобретен в 1947 году, он не использовался в компьютерах. Транзисторы использовались во многих электронных устройствах в конце 1950-х годов. Позже его также использовали в компьютерах вместо электронных ламп. Поскольку первый компьютер на базе транзисторов, названный TX-0, был представлен в 1956 году, некоторые источники говорят, что второе поколение началось в 1956 году. Однако с 1959 по 1965 год транзисторы широко использовались в компьютерах. Поэтому периодом второго поколения компьютеров считается с 1959 по 1965 год.
Примечание. Транзистор относится к полупроводниковому устройству, которое помогает усиливать или переключать электронные сигналы и электрическую мощность. Он был изобретен в Bell Labs совместно тремя людьми: Уильямом Шокли, Уолтером Хаузером Браттейном и Джоном Бардином в 1947 году.
На следующем изображении показан структурный вид транзисторов:
В отличие от компьютеров первого поколения, компьютеры второго поколения использовали язык ассемблера вместо двоичного машинного языка. Это позволило разработчикам вводить инструкции словами. Кроме того, в качестве ранних версий были представлены языки высокого уровня, такие как COBOL и FORTRAN, которые также использовались в компьютерах второго поколения. В компьютерах второго поколения обычно использовалась пакетная обработка в сочетании с многопрограммной операционной системой.
Кроме того, компьютеры использовали магнитные сердечники в качестве первичной памяти, а магнитные ленты и диски — в качестве других запоминающих устройств. Эти компьютеры были названы первым типом компьютеров, которые могли хранить инструкции в своей памяти из-за использования технологии магнитного сердечника.
Характеристики шестого поколения
В обозримом будущем, считают аналитики, мы вправе ожидать, что появится 6 поколение ЭВМ. Оно будет характеризоваться использованием нейронных элементов в архитектуре микросхем, использованием процессоров в рамках распределенной сети.
Производительность компьютеров в следующем поколении будет измеряться, вероятно, уже не в гигагерцах, а в принципиально иного типа единицах исчисления.