Память компьютера история развития кратко

Факты из истории компьютерного оборудования

Все мы используем персональные компьютеры и принимаем их как должное в нашей повседневной жизни. Достаточно легко забыть, что компьютеры окружают нас только последние несколько десятилетий, и первые из них были намного массивнее тех, что стоят сегодня на наших столах.

Знаете ли вы, что первый портативный компьютер весил 25 кг и стоил около $ 20 000, что первый лазерный принтер был настолько большим, что заполнял большую часть комнаты, или что покупатели первых персональных компьютеров должны были собирать их сами? Эта статья позволит вам взглянуть на одни из первых прототипов компьютерного оборудования и узнать, как они выглядели.

Память персонального компьютера. Основные понятия

Компьютерная память (устройство хранения информации, запоминающее устройство) — часть вычислительной машины, физическое устройство или среда для хранения данных в течение определенного времени. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям. В современной компьютерной технике часто используются физические свойства полупроводников, когда прохождение тока через полупроводник или его отсутствие трактуются как наличие логических сигналов 0 или 1. Устойчивые состояния, определяемые направлением намагниченности, позволяют использовать для хранения данных разнообразные магнитные материалы. Наличие или отсутствие заряда в конденсаторе также может быть положено в основу системы хранения.

Компьютерная память обеспечивает поддержку одной из наиважнейших функций современного компьютера, — способность длительного хранения информации. Вместе с центральным процессором запоминающее устройство являются ключевыми звеньями.

Система хранения информации в современном цифровом компьютере основана на двоичной системе счисления. Числа, текстовая информация, изображения, звук, видео и другие формы данных представляются в виде последовательностей битовых строк или бинарных чисел, каждое из которых состоит из значений 0 и 1. Это позволяет компьютеру легко манипулировать ими при условии достаточной емкости системы хранения. Например, для хранения небольшого рассказа достаточно иметь устройство памяти общим объемом всего лишь около 8 миллионов бит (примерно 1 Мегабайт).

К настоящему времени создано множество разнообразных устройств, предназначенных для хранения данных, многие из которых основаны на использовании самых разных физических эффектов. Универсального решения не существует, каждое содержит те или иные недостатки. Поэтому компьютерные системы обычно оснащаются несколькими видами систем хранения, основные свойства которых обуславливают их использование и назначение.

Наиболее знакомы средства машинного хранения данных, используемые в персональных компьютерах: — это модули оперативной памяти, жесткие диски (винчестеры), дискеты (гибкие магнитные диски), CD или DVD диски, а также устройства флэш-памяти.

Все виды памяти в компьютере можно классифицировать как внутреннюю, специальную и внешнюю память.

В состав внутренней памяти, которая физически расположена внутри системного блока входят:

  • — регистры процессора, предназначенные для хранения тех данных, с которыми компьютер работает в данный момент
  • — оперативное запоминающее устройство (ОЗУ) является энергозависимым и хранит ту информацию, с которой компьютер работает непосредственно в данное время. Это, например, может быть исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы.
  • — сверхоперативная память (кэш).

Кэш — это раздел высокоскоростной памяти со временем доступа, сравнимым со временем доступа к регистрам центрального процессора. Часто кэш непосредственно входит в состав ЦП. Кэш-памятью управляет специальное устройство — контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды понадобятся в ближайшее время процессору. В этом случае обмен данными будет осуществляться не между регистрами и основной памятью, а между регистрами и кэшем. Затем, в подходящий момент, все выполненные изменения одновременно передаются в основную память компьютера.

К устройствам специальной памяти относятся постоянная память, перепрограммируемая постоянная память, видеопамять и др.

  • Постоянное запоминающее устройство (ПЗУ, англ.ROM) — энергонезависимая память. Содержание памяти зашивается при ее изготовлении и никогда не потребует изменения. В ней находится программа запуска и остановки компьютера. Важнейшей микросхемой является модуль BIOS-совокупность программ, предназначенных для автоматического тестирования и управления разными устройствами после включения питания и загрузки операционной системы в оперативную память.
  • Перепрограммируемая постоянная память — энергонезависимая память, допускающая многократную перезапись.

Разновидность постоянного запоминающего устройства CMOS RAM — память с невысоким быстродействием и минимальным потреблением энергии от батарейки. Содержит информацию о конфигурации компьютера и режиме его работы. Содержимое этой памяти изменяется специальной программой Setup, находящейся в BIOS.

Внешняя память (ВЗУ) предназначена для длительного хранения данных и сохраняет их и при выключении компьютера. ВЗУ не имеют прямой связи с процессором.

Наиболее распространены следующие типы ВЗУ:

  • а) накопители на жестких магнитных дисках (НЖМД)
  • б) накопители на гибких магнитных дисках (НГМД)
  • в) накопители на оптических дисках (НОД)
  • г) накопители на магнитных лентах (НМЛ, стример)
  • д) флеш-накопители.

Жесткий диск (англ. HDD) — основное устройство для долговременного хранения больших объемов данных. На самом деле это не один диск, а группа со осных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Таким образом, этот «диск» имеет не две поверхности, а 2*п поверхностей, где п -число дисков в группе. Их рабочие поверхности разделены на кольцевые концентрические дорожки, а дорожки на секторы. Над каждой поверхностью располагается головка, предназначенная для чтения/записи данных. Управление работой жесткого диска выполняет специальное аппаратно-логическое устройство — контроллер жесткого диска.

К основным параметрам жестких дисков относятся емкость и производительность.

Оптический диск — собирательное название для носителей информации, выполненных в виде дисков, чтение с которых ведётся с помощью оптического излучения. Существует несколько разновидностей оптических дисков:

  • а) запись на компакт-диск только для чтения ( англ. CD-ROM) производится один раз при его создании и не может быть изменена. Диск представляет собой прозрачную поликарбонатную пластинку, одна сторона которой покрыта тончайшей алюминиевой пленкой, поверх которой нанесен защитный слой лака. Информация на ней представляется чередованием углублений и пиков в цифровом коде. Информация наносится вдоль спиральной дорожки. На каждом дюйме (2.5 см) по радиусу размещается 16 тыс. витков. Емкость CD достигает 780 Мбайт. Считывание информации осуществляется путем сканирования дорожек лазерным лучом, который по-разному отражается от углублений и пиков.
  • б)компакт-диск, допускающий хотя бы однократную запись информации на рабочем месте пользователя (англ.CD-R) является разновидностью компакт-диска. Обычный CD-R представляет собой тонкий диск из прозрачного пластика. Ёмкость стандартного CD-R составляет на данный момент 702 Мбайт данных. Он имеет спиральную дорожку для направления луча лазера при записи и считывании информации.
  • в) при создании дисков, позволяющих вести многократную перезапись, доминирует магнитно-оптический принцип (англ. CD-МО). В основу положен следующий физический принцип: коэффициент отражения лазерного луча от по-разному намагниченных участков диска различен. Таким образом, запись на МО-диски магнитная, а считывание — оптическое, т.е. производится лазерным лучом.

Емкость записи и скорость доступа к информации у компакт-дисков того же порядка, что у жестких дисков. По надежности хранения информации оптические диски в настоящее время не имеют себе равных.

На персональных компьютерах иногда используют специальный кассетный накопитель, размеры которого совпадают с размерами НГМД и который можно вставить на место последнего — так называемый стример. Он удобен, например, для переноса информации с жесткого диска одного компьютера на другой, долговременного хранения особо ценных системных и личных программ и данных.

Флеш-накопитель это съёмное и перезаписываемое устройство, компактен, имеет малый вес и прост в использовании. Накопитель имеет как различные показатели скорости записи и чтения, так и объемы памяти которые достигает 16 Тб. Основное назначение флеш-накопителей — хранение, перенос и обмен данными, резервное копирование и др.

Память

Память – способность компьютера обеспечивать хранение данных в запоминающих устройствах. Функции памяти: прием информации от других устройств, запоминание, выдача информации другим устройствам компьютера.

В компьютере несколько видов памяти и запоминающих устройств, отличающихся емкостью памяти, временем хранения, методом и скоростью доступа к данным, избирательностью выдачи данных, надежностью работы (рис. 3.8.).

Для персонального компьютера самая быстрая – внутренняя память (взаимодействующая с процессором) имеет несколько уровней:

  • • постоянную (только читаемую) память, в которой хранятся программы, необходимые для запуска компьютера;
  • • оперативную память для хранения обновляемых данных;
  • • кеш-память, увеличивающую производительность процессора.

Внешняя память более медленная, но и более вместительная – жесткие диски, сменные накопители и носители (магнитные ленты, дисководы, компакт-диски CD и DVD, флеш-карты).

Постоянная память: ПЗУ и система BIOS. Работа компьютера после включения начинается только при условии, что

Виды памяти ЭВМ

Рис. 3.8. Виды памяти ЭВМ

процессор получит из памяти данные и программы для обработки. Сразу «после пробуждения» процессору необходимы инициирующие команды и данные, которые сохраняются при отключении питания и предоставляются процессору при включении. Для этих целей в компьютере предусмотрено постоянное запоминающее устройство.

Постоянное запоминающее устройство (ПЗУ) – устройство энергонезависимой памяти, которая постоянно, даже после выключения компьютера, хранит фиксированные («вшитые») программу и данные и использует их для загрузки операционной системы и подключения устройств (рис. 3.9). Для хранения параметров конфигурации компьютера предназначена постоянная память на основе полупроводников – G’il/05-память. Для хранения видеоизображений, выводимых на экран монитора, служит видеопамять.

Схема ПЗУ постоянно хранит программу BIOS (англ. Base Input Output System – базовая система ввода-вывода), которую процессор выполняет для проверки устройств во время запуска, загрузки операционной системы или установки новой. Кроме того, программа BIOS устанавливает поток данных между операционной системой компьютера и подсоединенными устройствами: жестким диском, клавиатурой, мышью, принтером, видеосистемой, управляет потребляемой мощностью и питанием ПК. Данные в ПЗУ записываются в процессе изготовления, сохраняются после выключения питания компьютера и могут только читаться, результаты своей работы компьютер здесь не сохраняет (для ПЗУ используется и английский термин Read Only Memory, ROM – память только для чтения).

При включении компьютера процессор обращается к ПЗУ, считывает программу BIOS, начинает ее выполнять и осуществляет тестирование основных устройств: клавиатуры, оперативной памяти, дисководов и др. Если устройства не обнаружены или не работают, BIOS сообщает об ошибках звуковыми сигналами или текстом па экране. Если устройства обнаружены и работают должным образом, устанавливается связь системной платы с устройствами, подключаются клавиатура, жесткий диск и начинается процесс загрузки операционной системы ПК.

ПЗУ на системной плате

Рис. 3.9. ПЗУ на системной плате

После успешной загрузки операционной системы в оперативную память дальнейшее управление компьютером берет на себя операционная система, которая в последующем выполняет загрузку и управление прикладной программой или передает его какой-нибудь прикладной программе, например текстовому процессору Word.

В современных компьютерах система BIOS записывается в так называемой флеш-памяти (англ. in a flash – мгновенно) – в запоминающее устройство с возможностью перепрограммирования. Флеш-память, как и обычное ПЗУ, энергонезависима, т.е. данные не пропадают после отключения питания, но флеш-память позволяет обновлять, перезаписывать находящиеся в ней данные.

Система BIOS хранит программу установки Setup (англ. set up – установить). Сообщение о работе этой программы иногда высвечивается при загрузке компьютера на черном фоне экрана: «Чтобы войти в Setup, нажмите клавишу F1″ (или Del, или другую). Программа позволяет пользователю установить клавишами клавиатуры некоторые настройки BIOS, которые записываются в отдельную постоянную CMOS-память, питаемую от аккумуляторной батарейки. CMOS-память (Complimentary Metal Oxide Semiconductor Memory) представляет собой память для хранения конфигурации компьютера. Она имеет низкое энергопотребление и не изменяется при отключении питания. Эта память располагается на контроллере периферии, для электропитания которого используются специальные аккумуляторы. В CMOS хранятся некоторые настройки системы, текущая дата и время (их можно настроить также с помощью операционной системы), пароль на вход в компьютер. О пребывании в программе Setup свидетельствует характерный «старомодный», под DOS, вид экрана и заголовок типа Award BIOS Setup (если BIOS компании Award).

Помимо основной системы BIOS в компьютере есть местные, например видеосистемы BIOS.

Оперативная память – память временного хранения данных и команд, необходимых процессору для выполнения операций в текущем сеансе работы. Отличается особо быстрым доступом к чтению и записи данных процессором или другими устройствами. Работа компьютера – это прежде всего работа процессора с оперативной памятью.

При включении компьютера в оперативную память загружаются с диска программы и данные для работы операционной системы и работы отдельных устройств, а затем прикладные программы, которые открывает пользователь. Оперативная память хранит данные только на время, пока компьютер включен, поэтому она временная (на время сеанса работы) и энергозависимая (пока подает энергию источник питания). Данные в памяти утрачиваются при выключении компьютера или перезагрузке операционной системы.

Процессор выполняет вычисления по программе, размещенной в оперативной памяти, обменивается с памятью данными, отправляет данные из памяти во внешние запоминающие устройства или сеть. Доступ к данным оперативной памяти происходит гораздо быстрее, чем к данным внешней памяти, например жесткого диска, поэтому она и называется оперативной – быстродействующей.

Объем оперативной памяти определяет, насколько большие программы могут выполняться, а также сколько данных будет подготовлено им для доступа, сколько программ могут выполняться одновременно, что очень важно для быстродействия. В современные персональные компьютеры устанавливается память объемом 1 Гбайт и более.

Процессор выполняет операции с двоичными числами. Чем большей разрядности число может обработать процессор единовременно и чем больше оперативной памяти он может использовать для размещения обрабатываемых данных, тем выше быстродействие компьютера, тем лучше он работает с большими объемами данных.

Ячейка памяти – минимальная адресуемая область памяти, хранящая данные в виде двоичного числа определенной длины. Двоичное число (1 или 0) в ячейке памяти определяется наличием или отсутствием электрического заряда. Восемь ячеек оперативной памяти имеют индивидуальный адрес. Адрес – число, которое идентифицирует отдельные части памяти. Процессор рассматривает оперативную память как кипу страниц с пометками, пронумерованными записками, куда можно быстро заглянуть по номеру. Процессор, обладающий способностью работать с двоичными числами больших разрядов, может нумеровать и использовать очень много таких «страниц и записей». Способность адресовать оперативную память позволяет процессору найти ячейку по адресу (как камеру хранения по номеру). Английский термин RAM (Random Access Memory – память произвольного доступа) отражает свойство предоставлять с одинаковой скоростью доступ к любой ячейке памяти независимо от адреса ячейки.

Процессор одновременно обрабатывает несколько разрядов чисел. Повышение максимальной разрядности чисел позволяет увеличить количество ячеек оперативной памяти, а значит, возможный максимальный ее объем. Так, 32-разрядный процессор и 32-разрядная адресация могут адресовать 232 байта, т.е. 4 Гбайт оперативной памяти (если такой объем оперативной памяти доступен на компьютере). Перенос данных из памяти процессору выполняется 32-разрядной программой в несколько раз быстрее, чем 16-разрядной программой.

В компьютере с 64-разрядным процессором и 64-разрядной возможностью адресации предел оперативной памяти увеличивается до 264 = 1,8 • 1021 байт. Прикладные программы с 64-разрядным кодом, применяемые в Windows 7 и Windows 8, быстрее, чем в Windows ХР, выполняют операции перемещения данных в памяти, сложения, вычитания, деления, умножения, сравнения крупных массивов чисел.

Развитие технологии процессоров направлено на повышение разрядности обрабатываемых двоичных чисел. Для увеличения разрядности и скорости выполнения программ кристалл интегральной схемы плотнее насыщают транзисторными элементами, уменьшают размеры, применяют новые технологии производства.

Физически оперативная память выполняется в виде модулей из многих запоминающих ячеек (каждая со своим адресом), представляющих собой пластины с рядами контактов, на которых размещаются микросхемы памяти (рис. 3.10).

Модули памяти могут различаться между собой по размеру и количеству контактов, по быстродействию, по информационной емкости и т.д. Важнейшей характеристикой модулей оперативной памяти является быстродействие, которое зависит от максимально возможной частоты операций записи или считывания информации из ячеек памяти. Современные модули памяти обеспечивают время доступа к информации менее 10 наносекунд (10-9 с).

В персональных компьютерах объем адресуемой памяти и величина фактически установленной оперативной памяти практически всегда различаются. Хотя объем адресуемой памяти может достигать 4 Гбайт, величина фактически

Модуль ОЗУ

Рис. 3.10. Модуль ОЗУ

установленной оперативной памяти может быть значительно меньше, например «всего» 1 Гбайт.

Кеш-память может размещаться как вспомогательная между оперативной памятью и процессором, между оперативной памятью и диском. Кеш-память – это буферная, недоступная для пользователя быстродействующая память, автоматически используемая компьютером для ускорения операций с информацией, хранящейся в более медленно действующих запоминающих устройствах. Например, для ускорения операций с основной памятью организуется регистровая кеш-память внутри микропроцессора (кеш-память первого и второго уровня) или вне микропроцессора на материнской плате; для ускорения операций с дисковой памятью организуется кеш-память на ячейках электронной памяти.

Внешняя память – компьютерная память долговременного хранения программ и данных, недоступная процессору для непосредственного обращения. Процессор получает доступ к внешней памяти через оперативную память, команды ввода-вывода поручают оперативной памяти обменяться данными с внешней памятью.

Устройства внешней памяти – это накопители данных на магнитных или оптических носителях. В конструкции устройств внешней памяти имеются механические части, поэтому скорость их работы значительно ниже, чем у оперативной памяти. В системном блоке компьютера располагаются накопитель на жестком магнитном диске (винчестер), накопитель для оптических носителей – дисковод компакт- дисков CD/DVD. Стример (накопитель с магнитной лентой) выполняется как отдельное устройство.

История ЭВМ: от перфокарт до персональных компьютеров

Ровно 33 года назад, 12 августа 1981 года, на свет появился первый массовый персональный компьютер IBM PC, который со временем стали называть просто PC (ПК). То, что для нас уже давно стало привычным делом, в то время было настоящей революцией. M24.ru выделило основные этапы развития электронно-вычислительных машин.

Электронные вычислительные машины того времени представляли из себя массивные конструкции весом в несколько тонн. Каждый новый этап развития ЭВМ был связан не только с техническим прогрессом, но и с программным. Взять хотя бы Windows, который пришел на смену «бездушному» DOS.

Именно IBM, годом основания которой считается 1889 год, внесла огромный вклад в развитие компьютерной техники. Ее прародительница, корпорация CTR (Computing Tabulating Recording) включала в себя сразу три компании и выпускала самое различное электрическое оборудование: весы, сырорезки, приборы учета времени. После смены директора в 1914 году компания начала специализироваться на создании табуляционных машин (для обработки информации). Спустя 10 лет CTR поменяло свое название на International Business Machines или IBM.

M24.ru выделило основные этапы развития ЭВМ и их основных представителей, давших толчок к развитию современных компьютеров.

Еще в 1888 году инженер Герман Холлерит, основатель IBM, создал первую электромеханическую счетную машину — табулятор, который мог считывать и сортировать данные, закодированные на перфокартах (бумажных карточках с отверстиями). Его даже использовали при переписи населения в 1890 году в США.

При этом история компьютеров IBM началась спустя более полувека, в 1941 году, когда был разработан и создан первый программируемый компьютер «Марк 1» весом порядка 4,5 тонн, 17 метров в длину, 2,5 метра – в высоту. Президент IBM вложил в него 500 тысяч долларов. Впервые «Марк 1» был запущен в Гарвардском университете в 1944 году. Чтобы понять, насколько сложна была конструкция машины, достаточно сказать, что общая длина проводов составила 800 км. При этом компьютер осуществлял три операции сложения и вычитания в секунду.

Первое поколение ЭВМ

Первая ЭВМ, основанная на ламповых усилителях, под названием «Эниак» была создана в США в 1946 году. По размерам она была больше, чем «Марк 1»: 26 метров в длину, 6 метров в высоту, а ее вес составлял около 30 тонн. При этом по производительности «Эниак» в 1000 раз превышала «МАРК-1», а на ее создание ушло почти 500 тысяч долларов. Но у нее были существенные недостатки: очень мало памяти для хранения данных и долгое время перепрограммирования – от нескольких часов и до нескольких дней.

Кстати, среди создателей «Эниак» был ученый Джон фон Нейман, предложивший архитектуру ЭВМ, заложенную в компьютерах с конца 1940-х до середины 1950-х годов. Именно он осуществил переход к двоичной системе счисления и хранению полученной информации.

В 1951 году появился первый коммерческий компьютер UNIVAC, и уже в 1952 году вышел «IBM 701». Это был первый крупный ламповый научный коммерческий компьютер, причем создали его достаточно быстро – в течение двух лет. Его процессор работал значительно быстрее, чем у UNIVAC — 2200 операций в секунду против 455. В одну секунду процессор «IBM 701» мог выполнять почти 17 тысяч операций сложения и вычитания.

Второе поколение ЭВМ

Второе поколение ЭВМ использовало в своей основе транзисторы, созданные в 1947 году. Это была очередная революция, в результате которой существенно уменьшились размеры и энергопотребление компьютеров, так как сами биполярные транзисторы в разы меньше вакуумных ламп.

В 1959 году появились первые компьютеры IBM на транзисторах. Они были надежны, и ВВС США стали использовать их в системе раннего оповещения ПВО. А в 1960 году IBM разработала мощную систему Stretch или «IBM-7030». Она была и вправду сильна – создатели добились 100-кратного увеличения быстродействия. В течение трех лет он был самым быстрым компьютером в мире. Однако со временем IBM уменьшила его стоимость, а вскоре и вовсе сняла с производства.

Третье поколение ЭВМ

Третье поколение компьютеров связано с использованием интегральных схем (в которых используется от десятков до сотен миллионов транзисторов), впервые изготовленных в 1960 году американцем Робертом Нойсом.

В 1964 году IBM объявила о начале работы над целой линейкой IBM System/360.

System/360 хорошо продавалась даже спустя шесть лет после анонса системы. За 6 лет IBM выпустила более 30 тысяч машин. Однако затраты на разработку System/360 были очень велики — около пяти миллиардов долларов. Таким образом, System/360 заложила фундамент для следующих поколений, первым из которых был System/370.

Четвертое поколение ЭВМ

Четвертое поколение связано с использованием микропроцессоров. Первый такой микропроцессор под названием «Intel-4004» был создан в 1971 году компанией Intel, до сих пор остающейся в лидерах. Спустя 10 лет IBM выпустила первый персональный компьютер, который так и назывался IBM PC. Самая дорогая конфигурация стоила 3000 долларов и предназначалась для бизнеса, а конфигурация за 1500 долларов – для дома.

Процессор Intel 8088 работал на частоте 4,77 МГц (сейчас этот показатель в тысячи раз больше), а объем ОЗУ — 64 кбайта (сейчас – в миллионы раз больше). Для хранения информации использовались 5,25-дюймовые флоппи-дисководы. Жесткий диск нельзя было установить из-за недостаточной мощности блока питания.

Интересно, что разработкой компьютера занимались всего четыре человека. Причем IBM не запатентовала ни операционную систему DOS, ни BIOS, что породило огромное количество клонов. Уже в 1996 году IBM уступило первое место по продажам ПК на ею же основанном рынке.

Несмотря на то, что современные гаджеты сильно отличаются по характеристикам от своего предшественника, все они относятся к тому же поколению ЭВМ.

Основные толчки для развития компьютеров дала наука (появление ламп, а затем транзисторов). В настоящее время распространяется ввод информации с голоса, общения с машиной на человеческом языке (приложение Siri в iPhone) и активная работа над роботами. Основное мнение, что будущее – за квантовыми компьютерами, которые будут использовать в своей основе молекулы и нейрокомпьютерами, использующими центральную нервную систему человека и непосредственно его мозг. Однако для того, чтобы эти технологии появились, необходимо досконально изучить эти системы.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector