Нейроинтерфейс: управлять силой мысли

Елена Пицик, Университет Иннополис — о том, зачем вживлять в мозг нейроинтерфейсы

Нейроинтерфейсы сегодня находят самое широкое применение: от реабилитации людей после травм и инсультов до мониторинга сна и расслабления во время медитации. Илон Маск в рамках своего проекта Neuralink разрабатывает инвазивные интерфейсы, которые можно будет внедрять прямо в мозг человека без угрозы отторжения. «Хайтек» записал онлайн-лекцию сотрудницы Лаборатории нейронауки и когнитивных технологий Елены Пицик, посвященную интерфейсу «мозг — компьютер» и способам расшифровки электроэнцефалограммы. Выступление проходило при поддержке Университета Иннополис и ЦСК «Смена».

Читайте «Хайтек» в

Елена Пицик — младший научный сотрудник Лаборатории нейронауки и когнитивных технологий Университета Иннополис.

Нейроинтерфейс: посредник между мозгом и компьютером

Нейроинтерфейс (или интерфейс «мозг – компьютер») – так называется устройство для обмена информацией между мозгом и внешним устройством. В качестве объекта управления может выступать не только компьютер, но и любое другое электронное устройство: квадрокоптер, система «умного дома», промышленный робот или боевой дрон, экзоскелет и даже искусственные органы чувств.

Медицина на данный момент является основной областью применения нейроинтерфейсов. Здесь интерфейс «мозг – компьютер» открывает новые возможности в области протезирования и реабилитации инвалидов с различными моторными нарушениями. Например, после инсульта многие пациенты не могут говорить. В этой ситуации нейроинтерфейс выступает умным посредником между мозгом и внешней реальностью, единственным средством общения.

Парализованные пациенты с помощью такого устройства могут управлять протезом и инвалидной коляской или даже механическим экзоскелетом. Пожалуй, самое лучшее наглядное доказательство фантастических возможностей этой технологии произошло в 2014 году. Тогда Чемпионат мира по футболу в Бразилии открыл ударом по мячу Джулиано Пинто – человек с параличом нижних конечностей. Сделал он это с помощью экзоскелета, управляемого силой мысли.

Нейроинтерфейсы уверенно входят в повседневную жизнь и расширяют области использования. Сегодня к технологии «мозг – компьютер» начинает проявлять интерес не только медицина, но и развлекательная отрасль с ее компьютерными «игрушками», промышленное производство, устройства «умного дома», роботехника.

Согласно исследованию Allied Market Research, рынок интерфейсов «мозг – компьютер» растет опережающими темпами и уже в 2020 году составит порядка 1,46 млрд долларов.

Трепанация черепа с семью степенями свободы

Наиболее яркие исследования, связанные с ИМК, которым посвящены статьи в самых престижных научных журналах, — это так называемые инвазивные ИМК. Для «подключения» их к мозгу необходима нейрохирургическая операция, чаще всего — вживление электродов непосредственно в мозг. Это серьезный риск, неприемлемый для здоровых людей и нежелательный даже для тяжелых пациентов. Кроме того, стоимость таких операций на людях очень высока. Поэтому исследования с использованием инвазивных ИМК в течение еще многих лет будут выполняться в основном на животных.

Общедоступные коммерческие ИМК, как нетрудно догадаться, это неинвазивные ИМК. Их электроды считывают идущие из мозга электрические сигналы прямо с поверхности кожи головы. Иными словами, в этих ИМК используется та самая электроэнцефалограмма (ЭЭГ), которую сейчас требуют при оформлении медицинской справки для ГИБДД.

Что такое интерфейс мозг — компьютер (ИМК)

Рынок нейроинтерфейсов

По прогнозам Мarkets and Markets (октябрь 2016 года), рынок нейроинтерфейсов начнёт расти вслед за исследованиями расстройств и травм мозга, а также нарушений его работы. Кроме того, спрос на биосовместимые материалы будет дополнительно стимулировать рост рынка.

Среди факторов, ограничивающих рост этого рынка, Мarkets-and-markets упоминает прежде всего нехватку квалифицированных технических специалистов для создания и обслуживания сложных нейроинтерфейсов.

И, тем не менее, по прогнозам Аlliedmarketresearch (2015 год), объём рынка нейроинтерфейсов увеличится в период с 2014 года по 2020 год на 12% и к 2020 году станет одной из самых наукоёмких технологий в следующих областях (в порядке убывания доли на рынке): медицина, игры и развлечения, связь и телекоммуникации, «умные» дома.

Интересно, что доля полуинвазивных и инвазивных нейроинтерфейсов на рынке будет суммарно даже больше доли неинвазивных нейроинтерфейсов. «Все мы практически уже киборги», — так сказал в интервью самый известный современный инноватор и изобретатель Элон Маск.

По мнению Аlliedmarketresearch, рост рынка нейроинтерфейсов зависит от развития медицины мозговых нарушений, влияющих на движение частей тела, совершенствование инфраструктуры здравоохранения в динамично развивающихся странах, таких как Индия и Китай, а также использования сенсорных технологий и нейротехнологий в области игр и развлечений.

Среди крупных игроков, работающих на рынке нейроинтерфейсов — прежде всего американская Mind Technologies, а также ирландская Covidien, австралийская Compumedics, американская Natus Medical, японская Nihon Kohden, американские Integra Life Sciences, CAS Medical Systems и Advanced Brain Monitoring.

С чего все начиналось

Интерес к изучению мозга техническими методами возник сравнительно недавно — примерно на рубеже XIX и XX веков. В 1920-х годах исследователь Эдгар Эдриан предположил, что нейроны генерируют электрические импульсы и служат базовым элементом куда более сложной структуры. Позже Дональд Хебб разработал (1949) теорию пластичности синаптической передачи и нейронных ансамблей, что перевернуло представление об обязанностях, «закрепленных» за конкретными областями коры головного мозга. Оказалось, что при необходимости нейроны охотно меняют свои функции и нельзя выделить какую-то одну группу, отвечающую, например, за навыки информационной безопасности.

В 1960-х в лаборатории нейронального контроля Национального института здоровья США впервые попытались записать и обработать электрический сигнал с нейронов подопытной обезьяны. Пару десятилетий спустя эта же группа ученых экспериментировала с анализом мозговой деятельности уже в реальном времени, позволяя пациентам зажигать лампочки светового табло «силой мысли». Открывшиеся возможности окрылили исследователей, и варианты прикладных применений не заставили себя долго ждать. Первая научная статья, описывающая успешные эксперименты с «виртуальной клавиатурой» для парализованных людей, вышла в 1999 году (Нилс Бирбаумер).

Увы, мыслительные процессы человека оказались устроены гораздо сложнее, чем изначально предполагали ученые. Этим объясняется некоторый спад интереса к нейроинтерфейсам в начале XXI века. Однако история циклична, и сегодня многие проекты переживают второе рождение.

Во-первых, этому способствовал прогресс в аппаратном обеспечении. За последние несколько лет в продаже появились доступные по цене и относительно мало потребляющие аналого-цифровые преобразователи (АЦП), которые можно успешно использовать в задачах оцифровки биологических сигналов. Например, сигма-дельта-АЦП ADS1263 имеет заявленное разрешение 32 бит, уровень собственных шумов порядка 7 нВ, максимальную частоту оцифровки 38,4 кГц и полное входное сопротивление около 1 ГОм. Эти качества позволяют использовать микросхему в системах сбора информации без дополнительных буферных усилителей.

Кроме АЦП, существенно продвинулись по характеристикам инструментальные усилители, входное сопротивление которых приближается к тераомам, а коэффициент усиления составляет десятки тысяч раз. При этом собственные токи утечек и токовый шум не превышают одного пикоампера, что помогает разработчикам проектировать крайне чувствительные схемы съема биопотенциалов.

Из более очевидных вещей: производительность наших компьютеров выросла в десятки раз. Не в последнюю очередь это стало возможным благодаря использованию GPU-, FPGA- и ASIC-микросхем для анализа сигналов в реальном времени. Кроме того, весьма популярная сегодня модель организации вычислений в облаке позволяет компаниям легко арендовать необходимые мощности, концентрируясь на главном.

Во-вторых, вместе с аппаратной частью эволюционировали и возможности нашего программного обеспечения. Появились дружественные к исследователям фреймворки, высокоуровневые языки программирования и многочисленные способы визуализации и классификации информации. Например, сегодня с помощью нейросети можно легко отслеживать возникающие события и корреляцию даже в зашумленных рядах данных.

Ниже на рисунке изображены основные группы алгоритмов, которые используются для поиска особенностей сигнала в реальном времени.

Что касается основного источника информации для интерфейса «мозг — компьютер», то тут особых изменений не произошло. Сегодня наиболее часто используются сигналы с электроэнцефалограмм. Альтернативным способом может быть функциональная магнитно-резонансная томография (fMRI) и магнитоэнцефалография. Однако, как ты понимаешь, разработать компактный томограф практически невозможно, а многомиллионная стоимость готовых аппаратов ограничивает их использование только крупными коллективами в компаниях и институтах.

Будущее уже близко

Будущее уже близко: нейрокомпьютерные интерфейсы в играх

Майк Эмбиндер из Valve уверен, что после того, как НКИ поступят в массовое производство, не за горами тот момент, когда начнутся разработки полноценных имплантов, которые начнут вживлять в мозг. Причем в будущем это будет такой же обыденной штукой как операция по лазерной коррекции глаза. Сегодня создать для человечества что-то подобное хочет Илон Маск со своей компанией Neuralink. Имплант под названием N1 уже на финальной стадии разработки, первое тестирование на человеке хотят осуществить в этом году.

N1 разрабатывается в первую очередь для помощи парализованным людям. Сотрудники Neuralink хотят облегчить их жизнь с помощью таких имплантов или хотя бы позволить им проводить время в виртуальном мире, где они могут гулять, заниматься спортом и делать все, чего душа пожелает.

Сам Илон Маск заявляет, что вышеописанные возможности N1 – это только первый этап. Маск хочет создать интерфейс, который сделает возможным полноценный симбиоз человека с компьютером, но несмотря на свои «космические» амбиции, он прекрасно понимает, что пока это все из рода фантастики.

Первое включение и калибровка

Прежде всего необходимо скачать программное обеспечение с официального сайта проекта. Пока что оно там присутствует только для Windows и MacOS. Вместе с менеджером приложений и SDK для Unity там есть некоторое количество демок, которые мы, разумеется, протестировали на себе. После запуска дашборда NextMind Manager запускаем их и переходим в раздел Setup&Calibrate. Пришло время выполнить сопряжение с нейрогарнитурой.

Устройство имеет только одну кнопку. Короткое нажатие на нее включает и выключает гарнитуру. Длительное нажатие в течение 4 секунд инициирует процесс соединения. У белого светодиода — три режима работы. В рабочем режиме он горит постоянно. В процессе сопряжения Bluetooth медленно моргает, а когда ждет подтверждающего нажатия — моргает быстро.

После того как сопряжение выполнено, в правом верхнем углу появится актуальный заряд батареи и восьмиточечный индикатор качества прилегания электродов. Теперь следует надеть нейрогарнитуру на голову, стараясь попасть центром в «шишку» зрительной коры. Ее легко найти на ощупь. Несмотря на то, что в рекламных видеороликах это делается очень быстро, правильно надеть гарнитуру вряд ли получится с первого раза. У меня короткая стрижка, поэтому мне было проще, а вот у жены с этим возникли проблемы, и часть волос пришлось убрать в пучок.

Теперь надо добиться идеального прилегания электродов к скальпу, медленно и плавно покачивая гарнитуру, сдвигая ее вверх-вниз. Сложность в том, что детектор реагирует медленно и каждый раз после смещения надо выждать секунду, до того как все 8 точек загорятся сначала красным, а затем сменят цвет на зеленый в точках, где контакт идеален. Достаточно миллиметрового сдвига, и все точки сначала пропадают, затем снова становятся красными и только потом зелеными.

Это характерно исключительно для процесса калибровки. Как только все точки стали зелеными, сдвигать гарнитуру нельзя, контакт точно в норме. По опыту могу сказать, что сильно затягивать крепление не нужно, но и болтаться оно не должно. Медленная реакция детектора скорее всего связана с тем, что алгоритму следует на протяжении некоторого времени получать и распознавать сигнал, отделяя его от шума. После гарнитура работает значительно быстрее.

Начинается самое интересное — калибровка по визуальному образу. В течение 45 секунд в центре экрана появляется круг с моргающим рисунком рандомно расположенных «палочек». По центру круга будет «прицел» из трех зеленых линий — это индикатор концентрации. Как только вы сконцентрировались на круге, линии сводятся вместе, образуя треугольник. Если вы отвлеклись, то они вновь разойдутся. Чтобы корректно откалибровать гарнитуру, нужно сохранять концентрацию на протяжении всего времени калибровки.

Система по итогу оценивает ваш результат от 1 до 5. Сразу скажу, что если вы получите 3 и менее, то рекомендую сразу повторить калибровку, чтобы не портить себе дальнейший опыт. Менять положение головы, двигать руками/ногами и разговарить в момент калибровки нельзя. Вы должны четко видеть круг и не сводить с него глаз. Получив оценку 4 или 5, можно себя проверить на трех кругах и запускать приложения.

Какое отношение это имеет к информационной безопасности?

Как ни странно, самое непосредственное. Не будем касаться этических вопросов использования нейроинтерфейсов — время расставит все по местам. Но важно понимать, что подобные устройства, как и любая сложная электроника, нуждаются в защите.

Сейчас все принято подключать к Интернету, очевидно, что нейроустройства также не минует данная участь: как минимум велик соблазн использовать Всемирную сеть для того, чтобы отсылать диагностическую информацию о состоянии владельца или самого устройства. И через подключение устройство может быть взломано.

Нейрокомпьютерные интерфейсы — что это и как работает?

Tweet

И это не говоря уже о недалеком будущем, в котором нейроинтерфейсы, вероятно, будут использоваться повсеместно. Представьте, вы вживили себе импланты, улучшающие зрение и слух, а через них вам транслируют рекламу или вовсе передают ложную информацию.

Еще более пугающе выглядит чтение мыслей, не говоря уже о записи мыслей. Если уже сейчас есть возможность считывать видеообразы (пусть и с большими помехами), то что будет, когда технология усовершенствуется?

Возможно, пока подобные опасения напоминают сценарии фантастических боевиков. Однако при тех темпах, которые в наши дни свойственны развитию и внедрению новых технологий, нейроустройства и сопутствующие их использованию проблемы могут войти в повседневную жизнь людей гораздо стремительнее, чем кажется сейчас.

P.S. А еще такая штука сейчас лежит у меня на рабочем месте. Если кому-то из сотрудников московского офиса «Лаборатории Касперского» интересно — заходите попробовать в свободное от работы время.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector