Назначение и характеристика пзу

В чем заключается назначение ПЗУ.

Постоянное запоминающее устройство (ПЗУ) — энергонезависимая память, используется для хранения массива неизменяемых данных.

Постоянные ЗУ предназначены для хранения информации ко­торая остается неизменной в течение всего времени работы устрой­ства. Эта информация не исчезает при снятии напряжения питания.

Поэтому в ПЗУ возможен только режим считывания инфор­мации, причем считывание не сопровождается ее разрушением.

Класс ПЗУ не однороден и, как отмечалось ранее, может быть разбит на несколько самостоятельных подклассов. Однако все эти подклассы используют один и тот же принцип представления ин­формации. Информация в ПЗУ представляется в виде наличия или отсутствия соединения между шинами адреса (ША) и данных. В этом смысле ЭЗЭ ПЗУ подобен ЭЗЭ динамического ОЗУ, в ко­тором конденсатор памяти Сп либо закорочен, либо исключен из схемы.

2. Историческая хронология развития ПЗУ. Технологии ПЗУ по принцепу записиперезаписи его содержимого: ROM, PROM, EPROM, EEPROM, flashROM. Привести характеристику этих технологий и рисунки показывающии строение ячеек.

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики и BIOS в компьютерах, таблицы коэффициентов цифровых фильтров в сигнальных процессорах. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации можно построить на мультиплексорах. Схема такого постоянного запоминающего устройства приведена на рисунке 1.

Рисунок 1. Схема постоянного запоминающего устройства, построенная на мультиплексоре.

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 2.

Рисунок 2. Обозначение постоянного запоминающего устройства на принципиальных схемах.

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.

Рисунок 3. Схема многоразрядного ПЗУ.

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы — металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ. Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше — это использование кроме мультиплексора еще и демультиплексора. Такое решение позволяет превратить одномерную запоминающую структуру в многомерную и, тем самым, существенно сократить объем схемы дешифратора, необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:

Рисунок 4. Схема масочного постоянного запоминающего устройства.

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 . A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведЈн при обсуждении ОЗУ). Чтение микросхемы производится сигналом RD.

Рисунок 5. Обозначение масочного постоянного запоминающего устройства на принципиальных схемах.

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах — программаторах. В этих микросхемах постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве микросхемы изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти логических единиц. В процессе программирования на выводы питания и выходы микросхемы подаЈтся повышенное питание. При этом, если на выход микросхемы подаЈтся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход микросхемы подать низкий уровень напряжения (присоединить к корпусу), то через перемычку будет протекать ток, который испарит эту перемычку и при последующем считывании информации из этой ячейки будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) и изображаются на принципиальных схемах как показано на рисунке 6. В качестве примера можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.

Рисунок 6. Обозначение программируемого постоянного запоминающего устройства на принципиальных схемах.

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:

Рисунок 7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием.

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния — диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании микросхемы на второй затвор, находящийся над плавающим затвором, подаЈтся высокое напряжение и в плавающий затвор за счет тунельного эффекта индуцируются заряды. После снятия программирующего напряжения на плавающем затворе индуцированный заряд остаЈтся и, следовательно, транзистор остаЈтся в проводящем состоянии. Заряд на плавающем затворе может храниться десятки лет.

Структурная схема постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственно вместо перемычки используется описанная выше ячейка. В репрограммируемых ПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы встраивается окошко из кварцевого стекла.

При облучении микросхемы, изолирующие свойства оксида кремния теряются и накопленный заряд из плавающего затвора стекает в объем полупроводника и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы колеблется в пределах 10 — 30 минут.

Количество циклов записи — стирания микросхем находится в диапазоне от 10 до 100 раз, после чего микросхема выходит из строя. Это связано с разрушающим воздействием ультрафиолетового излучения. В качестве примера таких микросхем можно назвать микросхемы 573 серии российского производства, микросхемы серий 27сXXX зарубежного производства. В этих микросхемах чаще всего хранятся программы BIOS универсальных компьютеров. Репрограммируемые ПЗУ изображаются на принципиальных схемах как показано на рисунке 8.

Рисунок 8. Обозначение репрограммируемого постоянного запоминающего устройства на принципиальных схемах.

Так так корпуса с кварцевым окошком очень дороги, а также малое количество циклов записи — стирания привели к поиску способов стирания информации из ППЗУ электрическим способом. На этом пути встретилось много трудностей, которые к настоящему времени практически решены. Сейчас достаточно широко распространены микросхемы с электрическим стиранием информации. В качестве запоминающей ячейки в них используются такие же ячейки как и в РПЗУ, но они стираются электрическим потенциалом, поэтому количество циклов записи — стирания для этих микросхем достигает 1000000 раз. Время стирания ячейки памяти в таких микросхемах уменьшается до 10 мс. Схема управления для таких микросхем получилась сложная, поэтому наметилось два направления развития этих микросхем:

Электрически стираемые ППЗУ дороже и меньше по объему, но зато позволяют перезаписывать каждую ячейку памяти отдельно. В результате эти микросхемы обладают максимальным количеством циклов записи — стирания. Область применения электрически стираемых ПЗУ — хранение данных, которые не должны стираться при выключении питания. К таким микросхемам относятся отечественные микросхемы 573РР3, 558РР и зарубежные микросхемы серии 28cXX. Электрически стираемые ПЗУ обозначаются на схемах как показано на рисунке 9.

Рисунок 9. Обозначение электрически стираемого постоянного запоминающего устройства на принципиальных схемах.

В последнее время наметилась тенденция уменьшения габаритов ЭСППЗУ за счет уменьшения количества внешних ножек микросхем. Для этого адрес и данные передаются в микросхему и из микросхемы через последовательный порт. При этом используются два вида последовательных портов — SPI порт и I2C порт (микросхемы 93сXX и 24cXX серий соответственно). Зарубежной серии 24cXX соответствует отечественная серия микросхем 558РРX.

FLASH — ПЗУ отличаются от ЭСППЗУ тем, что стирание производится не каждой ячейки отдельно, а всей микросхемы в целом или блока запоминающей матрицы этой микросхемы, как это делалось в РПЗУ.

Рисунок 10. Обозначение FLASH памяти на принципиальных схемах.

При обращении к постоянному запоминающему устройству сначала необходимо выставить адрес ячейки памяти на шине адреса, а затем произвести операцию чтения из микросхемы. Эта временная диаграмма приведена на рисунке 11.

Рисунок 11. Временная диаграмма чтения информации из ПЗУ.

На рисунке 11 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке RD — это сигнал чтения, A — сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние), D — выходная информация, считанная из выбранной ячейки ПЗУ.

· ROM — (англ. read-only memory, постоянное запоминающее устройство), масочное ПЗУ, изготавливается фабричным методом. В дальнейшем нет возможности изменить записанные данные.

· PROM — (англ. programmable read-only memory, программируемое ПЗУ (ППЗУ)) — ПЗУ, однократно «прошиваемое» пользователем.

· EPROM — (англ. erasable programmable read-only memory, перепрограммируемое/репрограммируемоеПЗУ (ПППЗУ/РПЗУ)). Например, содержимое микросхемы К537РФ1 стиралось при помощи ультрафиолетовой лампы. Для прохождения ультрафиолетовых лучей к кристаллу в корпусе микросхемы было предусмотрено окошко с кварцевым стеклом.

· EEPROM — (англ. electrically erasable programmable read-only memory, электрически стираемое перепрограммируемоеПЗУ). Память такого типа может стираться и заполняться данными несколько десятков тысяч раз. Используется в твердотельных накопителях. Одной из разновидностей EEPROM является флеш-память (англ. flash memory).

· flashROM — (англ. flash read-only memory) — разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.

Статьи к прочтению:

7. Память – среда или функциональная часть ЭВМ, предназначенная для приема, хранения и избирательной выдачи данных. Различают оперативную, регистровую,…

Состав, назначение, характеристики и принципы работы основных элементов персонального компьютера. Персональный компьютер включает следующие основные…

Что такое ПЗУ?

ПЗУ — постоянное запоминающее устройство, которое обычно не зависит от энергоносителей. ПЗУ предназначено в качестве памяти, которая используется для хранения всех данных, в том числе неподдающихся изменениям. В таком устройстве обычно записана микропрограмма, при помощи которой можно управлять любым техническим устройством, информационным носителем. Так, при помощи ПЗУ к панели приборов современного автомобиля можно подключать мобильные устройства, смартфоны, планшеты и т.д. Массив данных ПЗУ может совмещаться с устройствами, которые считывают информацию, в этом случае используются микросхемы. Известно, что массив данных может существовать и автономно. В этом случае используются перфораторы, компакт-диски и т.д.

ПЗУ

aktrissa_ns

Что такое левостороннее движение?

Что такое правостороннее движение?

Что такое ОЗУ?

Что такое задняя передача?

Что такое VIM?

ПЗУ в смартфоне — что это?

Некоторое время назад наш сайт рассказывал о том, что такое ОЗУ в смартфоне или телефоне. Напомним, что это оперативная память устройства. А что такое ПЗУ? Давайте искать ответ.

ПЗУ (сокращенно от «постоянное запоминающее устройство» и англ. ROM — Read-Only Memory) — это вид памяти, который позволяет осуществлять хранение информационных данных на устройстве, и установленных на него программ. В ПЗУ хранятся не только программы, но и другие файлы, включая, например, аудиофайлы.

Если говорить простым языком, то ПЗУ — это физическая память, доступная на вашем устройстве. Ее объем вы можете узнать при покупке девайса. Как правило, это 8 Гб, 16 Гб, 32 Гб, 64 Гб и т.д. Соответственно, чем больше объем ПЗУ, тем лучше для пользователя, хотя многим вполне хватает 8 Гб или 16 Гб.

Объем ПЗУ в большинстве случаев легко расширить за счет карт памяти, которые продаются в любом магазине. Главное, чтобы смартфон или планшет имел поддержку карт памяти, поскольку в последнее время стал популярен тренд отказываться от карт памяти вовсе.

Специалисты рекомендуют изначально покупать устройство с большим объемом памяти, нежели в дальнейшем пользоваться картами памяти. Связано это с тем, что ПЗУ работает куда быстрее карт памяти.

Кстати, что касается объема памяти ПЗУ, то не забывайте, что его реальный объем будет меньше, нежели заявленный. Почему? Потому, что часть памяти съедает установленная операционная система. Например, из 16 Гб пользователю может быть доступно несколько меньше — 12-14 Гб в зависимости от версии установленного ПО.

Микросхема ПЗУ и система BIOS

ПЗУ (постоянное запоминающее устройство) – одна из важнейших микро- схем материнской платы. Микросхема ПЗУ способна длительное время хранить информацию, даже когда компьютер выключен. Программы, находящиеся в ПЗУ, называют «зашитыми» — их записывают туда на этапе изготовления микросхемы.

Комплект программ, находящихся в ПЗУ, образует базовую систему вво-

да-вывода (BIOS — Basic Input Output System). В BIOS записаны первичные про- граммы, с которых начинается работа компьютера. Как только на процессор поступает питание, он обращается в эту микросхему за своей самой первой программой. Если вы видели, как включается компьютер, и обращали внимание на белые буквы, пробегающие на черном фоне сразу после запуска, то знайте, что это вы наблюдали работу программ, записанных в BIOS.

Программы BIOS производят проверку основных систем компьютера сразу после включения, обеспечивают взаимодействие с клавиатурой и монитором, выполняет проверку дисководов и позволяют выполнить некоторые настройки чипсета материнской платы и даже самого процессора. Так, например, если ма- теринская плата может работать с несколькими частотами, то частоту можно задать с помощью переключателей на самой материнской плате или с помощью программы, записанной в BIOS. То же относится к коэффициенту внутреннего умножения частоты процессора (если она не задана «жестко», как в процессо- рах Intel Celeron).

У каждого способа управления есть достоинства и недостатки. Например,

управлять параметрами материнской платы с помощью перенастройки про- грамм BIOS удобно, поскольку это не требует разборки корпуса системного блока и доступа к материнской плате. С другой стороны, в случае ошибки в на- значении параметров можно сделать программы BIOS неработоспособными – тогда компьютер просто не запустится, и восстановить настройки BIOS про- граммным путем уже не удастся. В этом случае спасает настройки BIOS с по- мощью переключателей на материнской плате.

Микросхему BIOS легко найти. За исключением процессора это единст- венная микросхема, которая не впаяна в материнскую плату, а устанавливается на специальной колодке, так что ее можно вынуть и заменить. Самостоятельно этим лучше не заниматься.

Энергонезависимая память CMOS

Выше мы отметили, что работа таких стандартных устройств, как клавиа- тура, может обслуживаться программами, входящими в BIOS, но такими сред- ствами нельзя обеспечить работу со всеми возможными устройствами. Так, на- пример, изготовители BIOS абсолютно ничего не знают о параметрах наших жестких и гибких дисков, им не известны ни состав, ни свойства произвольной вычислительной системы (компьютера). Для того чтобы начать работу с другим оборудованием, программы, входящие в состав BIOS, должны знать, где можно найти нужные параметры. По очевидным причинам их нельзя хранить ни в оперативной памяти, ни в постоянном запоминающем устройстве.

Специально для этого на материнской плате есть микросхема «энергонеза-

висимой памяти», называемая CMOS. От оперативной памяти она отличается тем, что ее содержимое не стирается во время выключения компьютера, а от

ПЗУ она отличается тем, что данные в нее можно заносить и изменять само-

стоятельно, в соответствии с тем, какое оборудование входит в состав системы.

Эта микросхема постоянно подпитывается от небольшой батарейки, располо- женной на материнской плате. Заряда этой батарейки хватает на то, чтобы мик- росхема не теряла данные, даже если компьютер не будут включать несколько лет.

В микросхеме CMOS хранятся данные о гибких и жестких дисках, о про-

цессоре, о некоторых других устройствах материнской платы. Тот факт, что компьютер четко отслеживает время и календарь (даже и в выключенном со-

стоянии), тоже связан с тем, что показания системных часов постоянно хранят-

ся (и изменяются) в CMOS.

Таким образом, программы, записанные в BIOS, считывают данные о со-

ставе оборудования компьютера из микросхемы CMOS, после чего они могут выполнить обращение к жесткому диску, а в случае необходимости и к гибко- му, и передать управление тем программам, которые там записаны.

Жесткий диск

Жесткий диск (HDD – Hard Disk Drive) основное устройство для долго- временного хранения больших объемов данных и программ. В обиходе его на- зывают «винчестером». Внутри Жесткого диска с большой скоростью враща- ются диски, покрытые магнитным слоем. По поверхностям этих дисков пере- мещаются головки чтения/записи. Диски и головки размещены в герметичном и прочном корпусе.

Жесткий диск – сложное устройство «высоких технологий». Он требует аккуратного обращения и соблюдения правил эксплуатации. Во время враще- ния дисков с высокой скоростью между их поверхностями и головками чте- ния/записи возникает тонкая воздушная подушка, предотвращающая касание (и повреждение) головками магнитного слоя дисков. При ударе или сильном толчке головка может коснуться поверхности диска и повредить магнитный слой. В некоторых случаях повреждается и сама головка.

Управление работой жесткого диска выполняет специальное аппаратно- логическое устройство – контроллер жесткого диска. В прошлом оно пред- ставляло собой отдельную дочернюю плату, которую подключали к одному из свободных слотов материнской платы. В настоящее время функции контролле- ров дисков выполняют микросхемы, входящие в микропроцессорный комплект (чипсет), хотя некоторые виды высокопроизводительных контроллеров жест- ких дисков по-прежнему поставляются на отдельной плате.

К основным параметрам жестких дисков относятся емкость и производи-

В настоящее время наиболее распространенными НЖМД являются диски емкостью 20–100 Гбайт и более. Производительность НЖМД характеризуется ско- ростью чтения/записи и средним временем доступа. В целом же быстродействие

диска в наибольшей степени определяется скоростью вращения пластин. В недо- рогих дисках она составляет 5400 об/мин, в более качественных – 7200 и более об/мин.

Современные НЖМД с интерфейсом IDE обладают достаточно большой на- дежностью, а их скорость обычно достаточна для решения любых стандартных задач. Исключение составляют задачи, требующие записи/считывания с диска

большого потока данных, например при записи на диск видеоданных с высоким разрешением. Высокопроизводительные НЖМД требуются также для использо- вания в серверах. Поэтому в них часто используются НЖМД с интерфейсом SCSI.

Они значительно дороже, чем IDE-накопители.

Некоторые производители (Seagate) заявляют, что благодаря использованию перспективных технологий уже в 2004 году будут выпущены НЖМД, способные хранить по несколько терабайтов.

Данные с жесткого диска передаются медленнее, чем из оперативной па- мяти, зато остаются на нем после выключения питания. Впрочем, скорость ра- боты жестких дисков все-таки выше, чем у большинства других внешних (ме-

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector