Локальные компьютерные сети

Компьютерные сети

Локальная вычислительная сеть (ЛВС) объединяет компьютеры, которые располагаются на небольшом расстоянии друг от друга (в одном кабинете или здании).

  • совместно использовать аппаратные, программные ресурсы;
  • создавать и совместно использовать информационные ресурсы.
  • кабель
  • сетевая интерфейсная плата
  • сервер сети
  • центральное запоминающее устройство
  • рабочие станции.

Сервер (от англ. server — обслуживающее устройство) — это более мощный компьютер, который позволяет управлять работой всей сети.

Рабочая станция (клиентский компьютер) — это компьютер рядового пользователя, получающий доступ к ресурсам серверов.

Принципы организации сетей

Технологии взаимодействия компьютеров, объединенных в локальную сеть, могут различаться в зависимости от принципа организации структуры сети, а именно различают одноранговые и иерархические сети.

Одноранговая сеть (рис. 6.6) – сеть, в которой каждый компьютер (рабочая станция) имеет одинаковые права, т.е. все компьютеры равноправны. В одноранговых сетях возможно дополнительно создать подсети, так называемые рабочие группы с соответствующими именами.

Равноправность компьютеров в такой сети означает, что каждый владелец компьютера, имеющего доступ к сети, может самостоятельно управлять ресурсами и данными, находящимися на компьютере. Разрешить пользоваться ресурсами и данными того или иного компьютера означает предоставить общий доступ пользователям, находящимся в той же группе, что и данный компьютер, а также можно установить пароль доступа и права доступа к ресурсу. В связи с этим каждый владелец компьютера несет ответственность за сохранность и работоспособность конкретного ресурса и рабочей станции в целом. Компьютер, находящийся в локальной сети, но при этом не входящий в ту или иную группу пользователей, не сможет воспользоваться общим ресурсом, выделенным для данной группы пользователей.

В одноранговой локальной сети понятие «пользователь» равносильно понятиям «компьютер группы», «рабочая

Одноранговая сеть

Рис. 6.6. Одноранговая сеть

станция». В частности, каждый пользователь может одновременно как предоставлять свои ресурсы другим пользователям, так и использовать ресурсы других компьютеров. Локальные сети, организованные поданному принципу, используют небольшие организации, число компьютеров в которых не превышает 10–15.

Преимущества одноранговой сети:

  • • высокая надежность;
  • • простота работы и управления в них;
  • • низкая стоимость.

Недостатки одноранговой сети:

  • • эффективность функционирования зависит от количества станций в сети и дополнительных устройств;
  • • сложность гарантирования защиты информации;
  • • сложности при обновлении или смене программного обеспечения.

Иерархическая сеть (рис. 6.7) – сеть, в которой один из компьютеров выполняет функции хранения данных (выделенный сервер), предназначенных для использования всеми остальными рабочими станциями локальной сети, управления взаимодействием рабочих станций и ряд сервисных функций. Создание и эксплуатация иерархической сети требует соответствующих профессиональных навыков и постоянного администрирования сети соответствующим специалистом – системным администратором.

Предоставление ресурсов в иерархической сети в отличие от одноранговой осуществляется в соответствии с правами того или иного пользователя. Для полноценного использования ресурсов сети пользователи должны быть

Иерархическая сеть

Рис. 6.7. Иерархическая сеть

зарегистрированы администратором в сети с определенными правами доступа, в соответствии с которыми выделенный сервер будет определять ресурсы и данные, которые доступны конкретному пользователю. Вход в локальные компьютерные сети пользователем осуществляется на основе идентификации его сервером в соответствии с логином и паролем.

Создание сети с выделенным сервером, аккумулирующим большой объем общей информации, позволяет снизить требования к техническим характеристикам остальных компьютеров в сети, что способствует уменьшению суммарных затрат на покупку всего оборудования.

Достоинства иерархической сети:

  • • надежная система защиты;
  • • высокое быстродействие;
  • • отсутствие ограничений на число рабочих станций.

Недостатки иерархической сети:

  • • высокая стоимость, так как необходимо выделять мощный компьютер под выделенный сервер и поддерживать работу сети, прибегнув к услугам системного администратора;
  • • меньшая гибкость по сравнению с одноранговыми сетями.

Комбинируя вышеперечисленные виды локальных сетей, можно получить сети более сложных видов, принципов организации и функционирования:

  • • комбинирование одноранговой и иерархической сети, где рабочие станции взаимодействуют как по принципу функционирования одноранговой сети, так и по принципам функционирования иерархических сетей;
  • • иерархическая сеть с несколькими выделенными серверами (файловый сервер, сервер печати и т.д.);
  • • иерархическая сеть, функционирование которой основано на иерархии серверов, когда сервер нижнего уровня подключаются к серверам более высокого уровня.

Для функционирования сети, т.е. предоставления пользователям общей информации и сетевых ресурсов, разрабатываются сетевые операционные системы. При этом данные системы позволяют разрабатывать собственные прикладные сетевые программы и приложения для полноценного использования возможностей локальной сети.

Базовые сетевые операционные системы позволяют:

  • • копировать файлы с любого компьютера, находящегося в одной сети (рабочая группа);
  • • удаленно обрабатывать (поиск, редактирование, сохранение, удаление и т.д.) данные, находящиеся на другом компьютере в сети;
  • • удаленно запускать приложения для обработки данных, находящиеся на любом компьютере в сети;
  • • удаленно использовать периферийное оборудование (принтер, сканер, различные средства для обработки информации).

Определяющими преимуществами использования локальных компьютерных сетей стали возможности применения новых информационных технологий при обработке данных, которые проявляются в следующем:

  • • хранение общей информации на центральном компьютере, за счет чего достигается отсутствие дублирования и разночтения одной и той же информации;
  • • высокая надежность хранения информации за счет концентрирования ее на компьютерах с повышенными техническими характеристиками, имеющих специальные средства и устройства для периодического создания копий и архивации данных;
  • • повышенная система защиты от вредоносных программ, неквалифицированного использования общих прикладных программ и приложений неподготовленными пользователями;
  • • высокая конфиденциальность используемой в сети информации за счет применения специальных сетевых прикладных приложений, позволяющих четко разграничивать сектора доступа (права) определенных пользователей;
  • • независимость процесса обработки информации от компьютера в сети, на котором обслуживался клиент (банк, торговые предприятия, фонды и т.д.);
  • • возможность оперативного обмена большими объемами информации и подготовки совместных проектов между сотрудниками подразделений и организации, за счет чего происходит экономия времени и средств;
  • • создание новых видов услуг для упрощения финансовых расчетов и ускорения оборотов денежных средств.

В связи с этим подтверждается факт эффективности создания и поддержки локальных сетей, эффективность которых во много раз превышает затраты па их организацию и функционирование.

Проблемы объединения нескольких компьютеров. Топология сети. Базовые топологии, их преимущества и недостатки.

Как только компьютеров становится больше двух, возникает проблема выбора конфигурации физических связей или топологии. Под топологией сети понимается конфигурация графа, вершинам которого соответствуют конечные узлы сети (например, компьютеры) и коммуникационное оборудование (например, маршрутизаторы, мосты, коммутаторы), а ребрам — электрические и информационные связи между ними. Компьютеры, подключенные к сети, часто называют станциями или узлами сети.
Число возможных конфигураций резко возрастает при увеличении числа связываемых устройств. Так, если три компьютера мы можем связать двумя способами, то для четырех компьютеров (рисунок 7) можно предложить уже шесть топологически различных конфигураций (при условии неразличимости компьютеров).
Мы можем соединять каждый компьютер с каждым или же связывать их последовательно, предполагая, что они будут общаться, передавая друг другу сообщения «транзитом». При этом транзитные узлы должны быть оснащены специальными средствами, позволяющими выполнять эту специфическую посредническую операцию. В роли транзитного узла может выступать как универсальный компьютер, так и специализированное устройство.

Рисунок 7 — Варианты связи компьютеров

От выбора топологии связей зависят многие характеристики сети. Например, наличие между узлами нескольких путей повышает надежность сети и делает возможной балансировку загрузки отдельных каналов. Простота присоединения новых узлов, свойственная некоторым топологиям, делает сеть легко расширяемой. Экономические соображения часто приводят к выбору топологий, для которых характерна минимальная суммарная длина линий связи.
Среди множества возможных конфигураций различают полносвязные и неполносвязные топологии:

Полносвязная топология (рисунок 8) соответствует сети, в которой каждый компьютер непосредственно связан со всеми остальными. Несмотря на логическую простоту, это вариант громоздкий и неэффективный.
Действительно, каждый компьютер в сети должен иметь большое количество коммуникационных портов, достаточное для связи с каждым из остальных компьютеров. Для каждой пары компьютеров должна быть выделена отдельная физическая линия связи. (В некоторых случаях даже две, если невозможно использование этой линии для двусторонней передачи.) Полносвязные топологии в крупных сетях применяются редко, так как для связи N узлов требуется N(N-1)/2 физических линий связи, т.е. имеет место квадратическая зависимость. Чаще этот вид топологии используется в многомашинных комплексах или в сетях, объединяющих небольшое количество компьютеров.

Рисунок 8 — Полносвязная конфигурация

Все другие варианты основаны на неполносвязных топологиях, когда для обмена данными между двумя компьютерами может потребоваться промежуточная передача данных через другие узлы сети.
Ячеистая топология получается из полносвязной путем удаления некоторых возможных связей (рисунок 9). В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей.

Рисунок 9 — Ячеистая топология

В сетях с кольцевой конфигурацией (рисунок 10) данные передаются по кольцу от одного компьютера к другому, как правило, в одном направлении. Если компьютер распознает данные как «свои», то он копирует их себе во внутренний буфер. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Кольцо представляет собой очень удобную конфигурацию для организации обратной связи — данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому этот узел может контролировать процесс доставки данных адресату. Часто это свойство кольца используется для тестирования связности сети и поиска узла, работающего некорректно. Для этого в сеть посылаются специальные тестовые сообщения — маркеры.

Рисунок 10 — Топология «кольцо»

Топология «звезда» (рисунок 11) образуется в том случае, когда каждый компьютер с помощью отдельного кабеля подключается к общему центральному устройству, называемому концентратором, который находится в центре сети.
В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. В роли концентратора может выступать как компьютер, так и специализированное устройство, такое как многовходовый повторитель, коммутатор или маршрутизатор.
Главное преимущество этой топологии — существенно большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора может вывести из строя всю сеть. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи.
К недостаткам топологии типа звезда относится более высокая стоимость сетевого оборудования из-за необходимости приобретения концентратора. Кроме того, возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора.

Рисунок 11 — Топология «звезда»

Иногда имеет смысл строить сеть с использованием нескольких концентраторов, иерархически соединенных между собой связями типа «звезда» (рисунок 12). Получаемую в результате структуру называют также деревом. В настоящее время дерево является самым распространенным типом топологии связей, как в локальных, так и в глобальных сетях.
Особым частным случаем конфигурации звезда является конфигурация «общая шина» (рисунок 13). Здесь в роли центрального элемента выступает пассивный кабель, к которому по схеме «монтажного ИЛИ» подключается несколько компьютеров (такую же топологию имеют многие сети, использующие беспроводную связь — роль общей шины здесь играет общая радиосреда).

Рисунок 12 -Топология «иерархическая звезда» или «дерево»

Передаваемая информация распространяется по кабелю и доступна одновременно всем присоединенным к нему компьютерам. Передаваемая информация может распространяться в обе стороны.

Рисунок 13 Топология «общая шина»

Основными преимуществами такой схемы являются низкая стоимость и простота наращивания, то есть присоединения новых узлов к сети.
Применение общей шины снижает стоимость проводки, унифицирует подключение различных модулей, обеспечивает возможность почти мгновенного широковещательного обращения ко всем станциям сети. Таким образом, основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям.
Самым серьезным недостатком «общей шины» является ее недостаточная надежность: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть. К сожалению, дефект коаксиального разъема редкостью не является.
Другой недостаток «общей шины» — невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные по сети, поэтому пропускная способность канала связи всегда делится между всеми узлами сети. До недавнего времени «общая шина» являлась одной из самых популярных топологий для локальных сетей.
В настоящее время часто используются топологии, которые комбинируют компоновку сети по принципу шины, звезды и кольца.
«Звезда-шина» — это комбинация топологий «шина» и «звезда», что показано на рисунке 5. Чаще всего это выглядит так: несколько сетей с топологией «звезда» объединяются при помощи магистральной линейной шины.
В этом случае выход из строя одного компьютера не оказывает никакого влияния на сеть — остальные компьютеры по-прежнему взаимодействуют друг с другом. А выход из строя концентратора повлечет за собой остановку подключенных к нему компьютеров и концентраторов.

Рисунок 5 – Сеть с топологией «звезда-шина»

Звезда-кольцо (star-ring) кажется несколько похожей на «звезду-шину», что показано на рисунке 6. И в той, и в другой топологии компьютеры подключены к концентратору, который фактически и формирует кольцо или шину. Отличие в том, что концентраторы в звезде-шине соединены магистральной линейной шиной, а в звезде-кольце на основе главного концентратора они образуют звезду.

Рисунок 6 – Сеть с топологией «звезда-кольцо»

Иногда имеет смысл строить сеть с использованием нескольких концентраторов, иерархически соединенных между собой связями типа «звезда». Получаемую в результате структуру называют также деревом. В настоящее время дерево является самым распространенным типом топологии связей, как в локальных, так и в глобальных сетях.
В то время как небольшие сети, как правило, имеют типовую топологию — «звезда», «кольцо» или «общая шина», для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией (рисунок 14).

Рисунок 14 Смешанная топология

Основные характеристики базовых топологий локальных вычислительных сетей находятся в таблице 1.

Объединение компьютеров между собой

Информационно-вычислительная сеть (вычислительная сеть), представляет собой систему компьютеров, объединенных каналами передачи данных.
Основное назначение информационно-вычислительных сетей (ИВС) — обеспечение эффективного предоставления различных информационно-вычислительных услуг пользователям сети путем организации удобного и надежного доступа к ресурсам, распределенным в этой сети.
Информационные системы, построенные на базе ИВС, обеспечивают эффективное выполнение следующих задач:

· организация доступа пользователей к данным;

· передача данных и результатов обработки данных пользователям.

Основные показатели качества ИВС:

· Полнота выполняемых функций. Сеть должна обеспечивать выполнение всех предусмотренных для нее функций и по доступу ко всем ресурсам, и по совместной работе узлов, и по реализации всех протоколов и стандартов работы.

· Производительность — среднее количество запросов пользователей сети, исполняемых за единицу времени.

· Пропускная способность определяется количеством данных, передаваемых через сеть (или ее звено — сегмент) за единицу времени.

· Надежность сети — чаще всего характеризуется средним временем наработки на отказ.

· Достоверность результатной информации

· Безопасность— способность сети обеспечить защиту информации от несанкционированного доступа.

· Прозрачность сети — означает невидимость особенностей внутренней архитектуры сети для пользователя: в оптимальном случае он должен обращаться к ресурсам сети как к локальным ресурсам своего собственного компьютера.

· Масштабируемость — возможность расширения сети без заметного снижения ее производительности.

· Универсальность сети — возможность подключения к сети разнообразного технического оборудования и программного обеспечения от разных производителей.

Классификация ИВС по размеру охватываемой территории, принципу передачи сигнала и топологии.

Информационно-вычислительные сети (ИВС), в зависимости от территории, ими охватываемой, подразделяются на:

· локальные (ЛВС или LAN — Local Area Network);

• региональные (РВС или MAN — Metropolitan Area Network);

• глобальные (ГВС или WAN — Wide Area Network).

Локальной называется сеть, абоненты которой находятся на небольшом (до 10-15 км) расстоянии друг от друга. ЛВС объединяет абонентов, расположенных в пределах небольшой территории. Обычно такая сеть привязана к конкретному объекту. К классу ЛВС относятся сети отдельных предприятий, фирм, банков, офисов, корпораций и т. д. Если такие ЛВС имеют абонентов, расположенных в разных помещения, то они часто используют инфраструктуру глобальной сети Интернет и их принято называть корпоративными сетями или сетями интранет (intranet).

Региональные сети связывают абонентов города, района, области или даже небольшой страны. Обычно расстояния между абонентами региональной ИВС составляют десятки — сотни километров.

Глобальные сети объединяют абонентов, удаленных друг от друга на значительное расстояние, часто расположенных в различных странах или на разных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, систем радиосвязи и даже спутниковой связи.

Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целесообразные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. Локальные вычислительные сети могут входить как компоненты в состав региональной сети, региональные сети — объединяться в составе глобальной сети, и, наконец, глобальные сети могут также образовывать сложные структуры. Именно такая структура принята в сети Интернет.

По принципу организации передачи данных сети можно разделить на две группы:

В последовательных сетях передача данных выполняется последовательно от одного узла к другому и каждый узел ретранслирует принятые данные дальше. Практически все глобальные, региональные и многие локальные сети относятся к этому типу.

В широковещательных сетях в каждый момент времени передачу может вести только один узел, остальные узлы могут только принимать информацию. К такому типу сетей относится значительная часть ЛВС, использующая один общий канал связи (моноканал) или одно общее пассивное коммутирующее устройство.

По геометрии построения (топологии) ИВС могут быть:

· шинные (линейные, bus);

· кольцевые (петлевые, ring);

· радиальные (звездообразные, star);

· распределенные радиальные (сотовые, cellular);

· иерархические (древовидные, hierarchy);

· полносвязные (сетка, mesh);

Сети с шинной топологией используют линейный моноканал передачи данных, к которому все узлы подсоединены через интерфейсные платы посредством относительно коротких соединительных линий. Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не ретранслируют поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано.

Шинная топология — одна из наиболее простых топологий. Такую сеть легко наращивать и конфигурировать, а также адаптировать к различным системам; она устойчива к возможным неисправностям отдельных узлов.

Сеть шинной топологии применяет широко известная сеть Ethernet и организованная на ее базе Net Ware Novell.

В сети с кольцевой топологией все узлы соединены в единую замкнутую петлю (кольцо) каналами связи. Выход одного узла сети соединяется со входом другого.

Информация по кольцу передается от узла к узлу, и каждый узел ретранслирует посланное сообщение. В каждом узле для этого имеются своя интерфейсная и приемо-передающая аппаратура, позволяющая управлять прохождением данных в сети. Передача данных по кольцу с целью упрощения приемо-передающей аппаратуры выполняется только в одном направлении. Принимающий узел распознает и получает только адресованные ему сообщения.
Ввиду своей гибкости и надежности работы сети с кольцевой топологией получили также широкое распространение на практике (например, сеть Token Ring).
Основу последовательной сети с радиальной топологией составляет специальный компьютер — сервер, к которому подсоединяются рабочие станции, каждая по своей линии связи. Вся информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети.

В качестве недостатков такой сети можно отметить:

· большую загруженность центральной аппаратуры;

· полную потерю работоспособности сети при отказе центральной аппаратуры;

· большую протяженность линий связи;

· отсутствие гибкости в выборе пути передачи информации.

Последовательные радиальные сети используются в офисах с явно выраженным централизованным управлением.

Но используются и широковещательные радиальные сети с пассивным центром — вместо центрального сервера в таких сетях устанавливается коммутирующее устройство, обычно концентратор, обеспечивающий подключение одного передающего канала сразу ко всем остальным.

В зависимости от используемой коммуникационной среды сети делятся на:

· сети с моноканалом;

• полносвязные сети и сети со смешанной топологией.

В сетях с моноканалом данные могут следовать только по одному и тому же пути. Все пакеты доступны всем пользователям сети, но «вскрыть» пакет может только тот абонент, чей адрес в пакете указан. Такие сети иногда называют сетями с селекцией информации.

Иерархические, полносвязные и сети со смешанной топологией в процессе передачи данных требуют маршрутизации последней, то есть выбора в каждом узле пути дальнейшего движения информации.

2)Лока́льная вычисли́тельная сеть (ЛВС, локальная сеть, сленг. локалка; англ. Local Area Network, LAN) — компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

Глобальная компьютерная сеть, ГКС (англ. Wide Area Network, WAN) — компьютерная сеть, охватывающая большие территории и включающая в себя большое число компьютеров.

ГКС служат для объединения разрозненных сетей так, чтобы пользователи и компьютеры, где бы они ни находились, могли взаимодействовать со всеми остальными участниками глобальной сети.

Некоторые ГКС построены исключительно для частных организаций, другие являются средством коммуникации корпоративных ЛВС с сетью Интернет или посредством Интернет с удалёнными сетями, входящими в состав корпоративных. Чаще всего ГКС опирается на выделенные линии, на одном конце которых маршрутизатор подключается к ЛВС, а на другом концентратор связывается с остальными частями ГКС. Основными используемыми протоколами являются TCP/IP, SONET/SDH, MPLS, ATM и Frame relay. Ранее был широко распространён протокол X.25, который может по праву считаться прародителем Frame relay.

Глобальные сети отличаются от локальных тем, что рассчитаны на неограниченное число абонентов и используют, как правило, не слишком качественные каналы связи и сравнительно низкую скорость передачи, а механизм управления обменом, у них в принципе не может быть гарантировано скорым.

В глобальных сетях намного более важно не качество связи, а сам факт ее существования. Правда, в настоящий момент уже нельзя провести четкий и однозначный предел между локальными и глобальными сетями. Большинство локальных сетей имеют выход в глобальную сеть, но характер переданной информации, принципы организации обмена, режимы доступа к ресурсам внутри локальной сети, как правило, сильно отличаются от тех, что приняты в глобальной сети. И хотя все компьютеры локальной сети в данном случае включены также и в глобальную сеть, специфику локальной сети это не отменяет. Возможность выхода в глобальную сеть остается всего лишь одним из ресурсов, поделенным пользователями локальной сети.

Сетевые компоненты

Существует множество сетевых устройств, которые можно использовать для создания, сегментирования и усовершенствования сети.

Сетевые карты
Сетевой адаптер (Network Interface Card, NIC) — это периферийное устройство компьютера, непосредственно взаимодействующее со средой передачи данных, которая прямо или через другое коммуникационное оборудование связывает его с другими компьютерами. Это устройство решает задачи надежного обмена двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Как и любой контроллер компьютера, сетевой адаптер работает под управлением драйвера операционной системы.
В большинстве современных стандартов для локальных сетей предполагается, что между сетевыми адаптерами взаимодействующих компьютеров устанавливается специальное коммуникационное устройство (концентратор, мост, коммутатор или маршрутизатор), которое берет на себя некоторые функции по управлению потоком данных.
Сетевой адаптер обычно выполняет следующие функции:
– Оформление передаваемой информации в виде кадра определенного формата. Кадр включает несколько служебных полей, среди которых имеется адрес компьютера назначения и контрольная сумма кадра.
– Получение доступа к среде передачи данных. В локальных сетях в основном применяются разделяемые между группой компьютеров каналы связи (общая шина, кольцо), доступ к которым предоставляется по специальному алгоритму (наиболее часто применяются метод случайного доступа или метод с передачей маркера доступа по кольцу).
– Кодирование последовательности бит кадра последовательностью электрических сигналов при передаче данных и декодирование при их приеме. Кодирование должно обеспечить передачу исходной информацию по линиям связи с определенной полосой пропускания и определенным уровнем помех таким образом, чтобы принимающая сторона смогла распознать с высокой степенью вероятности посланную информацию.
– Преобразование информации из параллельной формы в последовательную и обратно. Эта операция связана с тем, что в вычислительных сетях информация передается в последовательной форме, бит за битом, а не побайтно, как внутри компьютера.
– Синхронизация битов, байтов и кадров. Для устойчивого приема передаваемой информации необходимо поддержание постоянного синхронизма приемника и передатчика информации.
Сетевые адаптеры различаются по типу и разрядности используемой в компьютере внутренней шины данных — ISA, EISA, PCI, MCA.
Сетевые адаптеры различаются также по типу принятой в сети сетевой технологии — Ethernet, Token Ring, FDDI и т.п. Как правило, конкретная модель сетевого адаптера работает по определенной сетевой технологии (например, Ethernet).
В связи с тем, что для каждой технологии сейчас имеется возможность использования различных сред передачи, сетевой адаптер может поддерживать как одну, так и одновременно несколько сред. В случае, когда сетевой адаптер поддерживает только одну среду передачи данных, а необходимо использовать другую, применяются трансиверы и конверторы.
Трансивер (приемопередатчик, transmitter+receiver) — это часть сетевого адаптера, его оконечное устройство, выходящее на кабель. В вариантах Ethernet’а оказалось удобным выпускать сетевые адаптеры с портом AUI, к которому можно присоединить трансивер для требуемой среды.
Вместо подбора подходящего трансивера можно использовать конвертор, который может согласовать выход приемопередатчика, предназначенного для одной среды, с другой средой передачи данных (например, выход на витую пару преобразуется в выход на коаксиальный кабель).

Повторители и усилители
Как говорилось ранее, сигнал при перемещении по сети, ослабевает. Чтобы предотвратить это ослабление, можно использовать повторители и (или) усилители, которые усиливают сигнал, проходящий через них.
Повторители (repeater) используются в сетях с цифровым сигналом для борьбы с затуханием (ослаблением) сигнала. Когда репитер получает ослабленный сигнал, он очищает этот сигнал, усиливает и посылает следующему сегменту.
Усилители (amplifier), хоть и имеют схожее назначение, используются для увеличения дальности передачи в сетях, использующих аналоговый сигнал. Это называется широкополосной передачей. Носитель делится на несколько каналов, так что разные частоты могут передаваться параллельно.
Обычно сетевая архитектура определяет максимальное количество повторителей, которые могут быть установлены в отдельной сети. Причиной этого является феномен, известный как «задержка распространения». Период, требуемый каждому повторителю для очистки и усиления сигнала, умноженный на число повторителей, может приводить к заметным задержкам передачи данных по сети.

Концентраторы
Концентратор (HUB) представляет собой сетевое устройство, действующее на физическом уровне сетевой модели OSI, служащее в качестве центральной точки соединения и связующей линии в сетевой конфигурации «звезда».
Существует три основных типа концентраторов:
– пассивные (passive);
– активные (active);
– интеллектуальные (intelligent).
Пассивные концентраторы не требуют электроэнергии и действуют как физическая точка соединения, ничего не добавляя к проходящему сигналу).
Активные требуют энергию, которую используют для восстановления и усиления сигнала.
Интеллектуальные концентраторы могут предоставлять такие сервисы, как переключение пакетов (packet switching) и перенаправление трафика (traffic riuting).

Мосты
Мост (bridge) представляет собой устройство, используемое для соединения сетевых сегментов. Мосты можно рассматривать как усовершенствование повторителей, так как они уменьшают загрузку сети: мосты считывают адрес сетевой карты (MAC address) компьютера-получателя из каждого входящего пакета данных и просматривают специальные таблицы, чтобы определить, что делать с пакетом.
Мост функционирует на канальном уровне сетевой модели OSI.
Мост функционирует как повторитель, он получает данные из любого сегмента, но он более разборчив, чем повторитель. Если получатель находится в том же физическом сегменте, что и мост, то мост знает, что пакет больше не нужен. Если получатель находится в другом сегменте, мост знает, что пакет надо переслать.
Эта обработка позволяет уменьшить загрузку сети, поскольку сегмент не будет получать сообщений, которые к нему не относятся.
Мосты могут соединять сегменты, которые используют разные типы носителей (10BaseT, 10Base2), а также с разными схемами доступа к носителю (Ethernet, Token Ring).

Маршрутизаторы
Маршрутизатор (router) представляет собой сетевое коммуникационное устройство, работающее на сетевом уровне сетевой модели, и может связывать два и более сетевых сегментов (или подсетей).
Он функционирует подобно мосту, но для фильтрации трафика он использует не адрес сетевой карты компьютера, а информацию о сетевом адресе, передаваемую в относящейся к сетевому уровню части пакета.
После получения этой информации маршрутизатор использует таблицу маршрутизации, чтобы определить, куда направить пакет.
Существует два типа маршрутизирующих устройств: статические и динамические. Первые используют статическую таблицу маршрутизации, которую должен создавать и обновлять сетевой администратор. Вторые – создают и обновляют свои таблицы сами.
Маршрутизаторы могут уменьшить загрузку сети, увеличить пропускную способность, а также повысить надежность доставки данных.
Маршрутизатором может быть как специальное электронное устройство, так и специализированный компьютер, подключенный к нескольким сетевым сегментам с помощью нескольких сетевых карт.
Он может связывать несколько небольших подсетей, использующих различные протоколы, если используемые протоколы поддерживают маршрутизацию. Маршрутизируемые протоколы обладают способностью перенаправлять пакеты данных в другие сетевые сегменты (TCP/IP, IPX/SPX). Не маршрутизируемый протокол – NetBEUI. Он не может работать за пределами своей собственной подсети.

Шлюзы
Шлюз (gateway) представляет собой метод осуществления связи между двумя и более сетевыми сегментами. Позволяет взаимодействовать несходным системам в сети (Intel и Macintosh).
Другой функцией шлюзов является преобразование протоколов. Шлюз может получить протокол IPX/SPX, направленный клиенту, использующему протокол TCP/IP, на удаленном сегменте. Шлюз преобразует исходный протокол в требуемый протокол получателя.
Шлюз функционирует на транспортном уровне сетевой модели.

Дата добавления: 2016-05-30 ; просмотров: 6111 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector