Логические имена устройств внешней памяти компьютера

Общая схема построения компьютера

Любой компьютер построен на общих принципах, которые позволяют выделить следующие главные устройства:

  • память (запоминающее устройство, ЗУ), состоящую из перенумерованных ячеек;
  • процессор, включающий в себя устройство управления (У У) и арифметико-логическое устройство (АЛУ);
  • устройства ввода;
  • устройство вывода.

Эти устройства соединены каналами связи, по которым передается информация. Авторы продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. ЭВМ стали обрабатывать и нечисловые виды информации — текстовую, графическую, звуковую и другие.Двоичное кодирование данных по-прежнему составляет информационную основу компьютера.

В основу построения подавляющего большинства компьютеров положены следующие общие принципы, которые сформулировал в 1945 г. Джон фон Нейман.

  1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Процессор исполняет программу автоматически, без вмешательства человека.
  2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами в памяти можно выполнять такие же действия, как и над данными. Таким образом, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.
  3. Принцип адресности. Структурно основная память состоит из пронумерованных ячеек, процессору в произвольный момент времени доступна любая ячейка.
  4. Принцип хранимой программы. П рограмма задавалась путем установки перемычек на специальной коммутационной панели. Нейман предложил сохранять программу в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений. Фон Нейман выдвинул основополагающие принципы логического устройства ЭВМ ,и предложил ее структуру которая воспроизводилась в течение первых двух поколений ЭВМ.

Устройство управления (УУ) и арифметико-логическое устройство (АЛУ) в современных компьютерах объединены в один блок — процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств. Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров «многоярусно» и включает оперативное запоминающее устройство (ОЗУ) и внешние запоминающие устройства(ВЗУ). ОЗУ- это устройство, хранящее ту информацию, с которой компьютер работает непосредственно в данное время ВЗУ-устройства гораздо большей емкости, чем ОЗУ, но существенно более медленны.

Логические имена устройств внешней памяти компьютера

К каждому компьютеру может быть подключено несколько устройств внешней памяти. Основным устройством внешней памяти ПК является жёсткий диск. Если жёсткий диск имеет достаточно большую ёмкость, то его можно разделить на несколько логических разделов.

  • можно хранить операционную систему в одном логическом разделе, а данные — в другом, что позволит переустанавливать операционную систему, не затрагивая данные;
  • на одном жёстком диске в различные логические разделы можно установить разные операционные системы;
  • обслуживание одного логического раздела не затрагивает другие разделы.

Каждое подключаемое к компьютеру устройство внешней памяти, а также каждый логический раздел жёсткого диска имеет логическое имя.

Логические устройства

Логические устройства

Для описания законов функционирования цифровых схем используется алгебра логики или булева алгебра. В основу алгебры логики положено понятие «событие», которое может наступить, либо не наступить. Наступившее событие считается истинным и выражается уровнем логической «1» , не наступившее событие считается ложным и выражается уровнем логического «0» .

На событие влияют переменные, причем влияют по определенному закону. Этот закон называется логической функцией , а переменные – аргументами . Т.о. логической функцией является функция у = f(x1, x2,… xn), принимающая значения «0» либо «1». Переменные x1, x2,… xn также имеют значения «0» либо «1».

Алгебра логики — раздел математической логики, изучающий строение сложных логических высказываний и способы установления их истинности с помощью алгебраических методов. В формулах алгебры логики переменные являются логическими или двоичными, т. е. принимающими только два значения — ложь и истина, которые обозначаются соответственно 0 и 1. Любая программа для ЭВМ содержит логические операции.

Устройства, предназначенные для формирования функций алгебры логики, называются логическими устройствами . Логическое устройство имеет сколь угодное количество входов и только один выход (рис. 1).

Логическое устройство

Рисунок 1 – Логическое устройство

Например, в состав электронного кодового замка входит логическое устройство, для которого событие (y) – это открытие замка. Для того чтобы событие произошло (y=1), т.е. замок открылся, необходимо определить переменные – десять кнопок кодонабирателя с цифрами. Определенные кнопки должны быть нажаты, т.е. принять значение «1» и при этом нажаты в определенной последовательности – логическая функция.

Любую логическую функцию удобно представить в виде таблицы состояний (таблицы истинности), где записываются возможные комбинации переменных (аргументов) и соответствующее им значение функции.

Логические устройства строятся на логических элементах, которые реализуют определённую функцию. Базовыми логическими функциями являются логическое сложение, логическое умножение и логическое отрицание.

1) ИЛИ (OR) — логическое сложение или дизъюнкция (от англ. disjunction — разъединение) — на выходе этого элемента появится логическая единица тогда, когда хотя бы на одном из входов появится единица. Логический ноль на выходе будет только тогда, когда на всех входах будет сигнал логического нуля.

Эту операцию можно реализовать с помощью контактной цепи с двумя параллельно включенными контактами. «1» на выходе такой цепи появится в том случае, если хотя бы один из контактов замкнут.

2) И (AND) — логическое умножение или конъюнкция (от англ. conjunction — соединение, & — амперсанд) — на выходе этого элемента сигнал логической единицы появляется только тогда, когда на всех входах будет присутствовать логическая единица. Если хотя бы на одном входе будет ноль, то и на выходе тоже будет ноль.

Эта операция может быть реализована контактной цепью, состоящей из последовательно включённых контактов.

3) НЕ (NOT) — логическое отрицание или инверсия , обозначается черточкой над переменной — операция выполняется над одной переменной x и значение у противоположно этой переменной.

Операция НЕ может быть осуществлена с помощью нормально замкнутого контакта электромагнитного реле: нет напряжения на обмотке реле (x = 0) – контакт замкнут и на выходе «1» (у = 1). При наличии напряжения на обмотке реле (х = 1) контакт разомкнут и на выходе «0» (у = 0).

Базовые логические функции и их реализация

Рисунок 2 – Базовые логические функции и их реализация

В логических устройствах используются различные логические элементы. Особое значение имеют две универсальные логические операции, каждая из которых способна самостоятельно образовать любую логическую функцию.

Логические устройства

4) И-НЕ — функция Шеффера .

5) ИЛИ-НЕ — функция Пирса .

Универсальные логические функции и их реализация

Рисунок 3 – Универсальные логические функции и их реализация

Пример: Схема охранной сигнализации на логических элементах. Генератор Г вырабатывает сигнал сирены, подавая его на усилительный каскад через логический элемент «И» на микросхеме DD2. При замкнутых состояниях охранных ключей S1 – S4 на входах элемента DD1 действует уровень «0» — на нижнем входе элемента «И» DD2 уровень «0», значит на затворе транзистора VT также «0».

В случае размыкания хотя бы одного из ключа, например S1, на вход элемента DD1 через резистор R1 поступит напряжение уровня «1», что приведёт к появлению «1» на втором входе элемента «И» DD1. Это позволит сигналу с генератора Г поступать на затвор транзистора, в нагрузке которого стоит динамик.

Схема охранной сигнализации

Рисунок 4 – Схема охранной сигнализации

Сложные цифровые схемы строятся путем многократного повторения базовых логических схем. Инструментом такого построения служит булева алгебра, которая применительно к цифровой технике называется алгеброй логики. В отличие от переменной в обычной алгебре логическая переменная имеет только два значения, которые называются логическим нулем и логической единицей.

Логический нуль и логическая единица обозначаются соответственно 0 и 1. В алгебре логики 0 и 1 не числа, а логические переменные. В алгебре логики существуют три основных операции между логическими переменными: логическое умножение (конъюнкция), логическое сложение (дизъюнкция) и логическое отрицание (инверсия).

Электронные схемы, выполняющие одну и ту же логическую функцию, но собранные на различных элементах, отличаются по потребляемой мощности, напряжению питания, значениям высокого и низкого уровней выходного напряжения, времени задержки распространения сигнала и нагрузочной способности.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Устройства ввода-вывода

Устройства ввода-вывода производят обмен информацией с компьютером. Они и вводят ее и выводят.

Жесткий диск

Жесткий диск – это блок для хранения данных. В него устанавливается операционная система и другое программное обеспечение, записываются файлы пользователя.

На сегодняшний день используются три вида жестких дисков:

  • Магнитные (HDD)
  • Твердотельные (SSD)
  • SSD M2

Магнитные (HDD). Запись и чтение данных происходит на и с магнитных дисков. У таких дисков большой объем памяти, записывать и считывать информацию можно многократно. Из недостатков – низкая скорость работы и чувствительность к вибрациям.

В современный ПК такой диск обычно устанавливают в качестве дополнительного – для хранения большого объема данных.

Твердотельные (SSD). В основе таких дисков лежат блоки памяти, в которые пишется вся информация. Из-за этого у них высокая скорость работы, так как диску не нужно постоянно перемещать пишущую головку для записи/чтения, как в магнитных дисках. Основной недостаток SSD – ограниченный цикл записи. Потому на него чаще всего устанавливают операционную систему и повседневные программы.

SSD M2 . Такой диск работает от шины PCI Express и дает пропускную способность в несколько раз выше, чем интерфейс SATA. Внешне М2 напоминает оперативную память: имеет небольшой размер, не требует дополнительного кабеля для подключения.

Из недостатков можно отметить ограниченный цикл записи и перегрев на некоторых моделях. Поэтому желательно выбирать М2 с радиатором охлаждения.

Flash память

Flash память или флешка – это портативное устройство для хранения данных. Используются для передачи данных с одного компьютера на другой.

Вся информация пишется на блоки памяти через интерфейс USB. Именно на основе Flash памяти выпускали первые SSD диски.

Bluetooth адаптер

Используется для беспроводного подключения оборудования с поддержкой Bluetooth. Это могут быть колонки, наушники, смартфоны.

Bluetooth адаптер работает через интерфейс USB, в ноутбуке он, как правило, встроенный.

Сетевая карта

При помощи сетевой карты компьютеры соединяются в единую сеть. Она подключается к роутеру патч кордом и дает возможность компьютерам обмениваться информацией.

Сетевая карта может быть встроенной, отдельной внутренней (устанавливаться на материнскую плату) и внешней (подключаться через интерфейс USB).

В современных материнских платах она встроена по умолчанию, в некоторых моделях их даже две.

Wi-Fi адаптер

Wi-Fi адаптер работает так же, как и сетевая карта. Основное отличие в том, что подключение происходит без проводов («по воздуху»). Подключается он к роутеру, который связывает компьютеры и смартфоны друг с другом.

В стационарных компьютерах по умолчанию Wi-Fi отсутствует. Подключить его можно, установив адаптер на материнскую плату или купив внешний USB Wi-Fi. В ноутбуках обычно адаптер встроен.

Пишущий дисковод

Дисковод — это устройство, читающее и записывающее информацию на компакт диск.

На сегодняшний день дисководы потихоньку уходят с рынка, так как вместо них чаще используют флешки.

Дисковод гибких дисков

Такой дисковод был популярен в 90-ые/начало 2000-ых, когда еще не было флешек, а запись на CD была дорогостоящей. В те времена почти в каждом ПК был Floppy дисковод, который записывал информацию на дискету. Объем дискеты составлял 1,44 Мб.

Сейчас такие дисководы, как и дискеты, потеряли актуальность и их перестают производить.

Картридер

Картридер считывает и записывает информацию на SD карты. В основном такие карты используются в фотоаппаратах, видеокамерах и телефонах/планшетах. Подключается картридер через интерфейс USB.

USB HUB

USB HUB – это что-то вроде удлинителя, он увеличивает количество USB портов. Как правило, хаб имеет три-четыре USB выхода.

Факс-модем

Раньше такие модемы были очень популярны – они повсеместно использовались для подключения к интернету. Обычно устанавливались в системный блок по интерфейсу PCI. Но также были и внешние модемы, которые подключались к COM порту.

Для работы такого модема использовалось телефонное подключение. Модем дозванивался до провайдера и после соединения появлялся интернет. Правда, скорость такого соединения была около 40 Кб/с. В режиме факса модем настраивался на автоматический ответ на звонок и принимал факс.

Данный вид модемов уже давно вышел с производства, хотя в некоторых регионах он до сих пор используется для работы с факсом.

3G и 4G модемы

3G и 4G модемы пришли на смену факс модемам. В них есть слот для установки сим карты, а подключение осуществляется через оператора сотовой связи.

Такие модемы имеют компактную форму и похожи на флешку. Подключаются в USB порт.

При хорошем сигнале модем в режиме 4G может обеспечить скорость подключения до 100 Мб/с.

Многофункциональное устройство (МФУ)

МФУ совмещает в себе сканер, принтер и копир. Некоторые модели имеют факс. Как и принтеры, бывают черно-белыми и цветными, лазерными и струйными.

Логическое устройство компьютера

Обычно персональные компьютеры IBM PC состоят из трех частей (блоков), рис. 1:

• клавиатуры, позволяющей вводить символы в компьютер;

• монитора (или дисплея) — для изображения текстовой и графической информации.

Компьютеры выпускаются и в портативном варианте — в «наколенном» (лэптор) или «блокнотном» (ноутбук) исполнении.

Рис. 1. Компьютер IBM PC (в настольном исполнении)

Рис. 2. Компьютер IBM PC (в блокнотном исполнении)

Хотя из этих частей компьютера системный блок выглядит наименее эффектно, именно он является в компьютере «главным». В нем располагаются все основные узлы компьютера:

• электронные схемы, управляющие работой компьютера (микропроцессор, оперативная память, контроллеры устройств и т.д., см. ниже);

• блок питания, преобразующий электропитание сети в постоянный ток низкого напряжения, подаваемый на электронные схемы компьютера;

• накопители (или дисководы) для гибких магнитных дисков, используемые для чтения и записи на гибкие магнитные диски (дискеты);

• накопитель на жестком магнитном диске, предназначенный для чтения и записи на несъемный жесткий магнитный диск (винчестер).

На рисунке 1 видны передние панели дисководов для дискет и жесткого диска.

Дополнительные устройства

К системному блоку компьютера IBM PC можно подключать различные устройства ввода-вывода информации, расширяя тем самым его функциональные возможности. Многие устройства подсоединяются через специальные гнезда (разъемы), находящиеся обычно на задней стенке системного блока компьютера. Кроме монитора и клавиатуры, такими устройствами являются:

• принтер — для вывода на печать текстовой и графической информации;

• мышь — устройство, облегчающее ввод информации в компьютер;

• джойстик — манипулятор в виде укрепленной на шарнире ручки с кнопкой, употребляется в основном для компьютерных игр;

• а также другие устройства.

Подключение этих устройств выполняется с помощью специальных проводов (кабелей).

Замечание. При включенном компьютере нельзя ни вставлять, ни вынимать кабели для подключения устройств — это может испортить компьютер.

Некоторые устройства могут вставляться внутрь системного блока компьютера, например:

• модем — для обмена информацией с другими компьютерами через телефонную сеть;

• факс-модем — сочетает возможности модема и телефакса;

• стример — для хранения данных на магнитной ленте.

Некоторые устройства, например сканер (прибор для ввода рисунков и текстов в компьютер), используют смешанный способ подключения: в системный блок компьютера вставляется только электронная плата (контроллер), управляющая работой устройства, а само устройство подсоединяется к этой плате кабелем.

Логическое устройство компьютера

Микропроцессор. Самым главным элементом в компьютере, его «мозгом», является микропроцессор — небольшая (в несколько сантиметров) электронная схема, выполняющая все вычисления и обработку информации. Микропроцессор умеет производить сотни различных операций и делает это со скоростью в несколько десятков или даже сотен миллионов операций в секунду. В компьютерах типа IBM PC используются микропроцессоры фирмы Intel, а также совместимые с ними микропроцессоры других фирм.

Сопроцессор. В тех случаях, когда на компьютере приходится выполнять много математических вычислений (например, в инженерных расчетах), к основному микропроцессору добавляют математический сопроцессор. Он помогает основному микропроцессору выполнять математические операции над вещественными числами. Новейшие микропроцессоры фирмы Intel (80486, Pentium, Pentiom Pro, Pentium II, Pentium III) сами умеют выполнять операции над вещественными числами, так что для них сопроцессоры не требуются.

Оперативная память. Следующим очень важным элементом компьютера является оперативная память. Именно из нее процессор и сопроцессор берут программы и исходные данные для обработки, в нее они записывают полученные результаты. Название «оперативная» эта память получила потому, что она работает очень быстро, так что процессору не приходится ждать при чтении данных из памяти или записи в память. Однако содержащиеся в ней данные сохраняются только пока компьютер включен, при выключении компьютера содержимое оперативной памяти стирается (за некоторыми исключениями, о которых говорится ниже).

Контроллеры и шина. Чтобы компьютер мог работать, необходимо, чтобы в его оперативной памяти находились программа и данные. А попадают они туда из различных устройств компьютера — клавиатуры, дисководов для магнитных дисков и т.д. Обычно эти устройства называют внешними, хотя некоторые из них могут находиться не снаружи компьютера, а встраиваться внутрь системного блока, как это описывалось выше. Результаты выполнения программ также выводятся на внешние устройства — монитор, диски, принтер и т.д.

Таким образом, для работы компьютера необходим обмен информацией между оперативной памятью и внешними устройствами. Такой обмен называется вводом-выводом. Но этот обмен не происходит непосредственно: между любым внешним устройством и оперативной памятью в компьютере имеются целых два промежуточных звена:

1. Для каждого внешнего устройства в компьютере имеется электронная схема, которая им управляет. Эта схема называется контроллером, или адаптером. Некоторые контроллеры (например, контроллер дисков) могут управлять сразу несколькими устройствами.

2. Все контроллеры и адаптеры взаимодействуют с микропроцессором и оперативной памятью через системную магистраль передачи данных, которую в просторечии обычно называют шиной.

Электронные платы. Для упрощения подключения устройств электронные схемы IBM PC состоят из нескольких модулей — электронных плат. На основной плате компьютера — системной, или материнской, плате — обычно располагаются основной микропроцессор, сопроцессор, оперативная память и шина. Схемы, управляющие внешними устройствами компьютера (контроллеры или адаптеры), находятся на отдельных платах, вставляющихся в унифицированные разъемы (слоты) на материнской плате. Через эти разъемы контроллеры устройств подключаются непосредственно к системной магистрали передачи данных в компьютере — шине. Таким образом, наличие свободных разъемов шины обеспечивает возможность добавления к компьютеру новых устройств. Чтобы заменить одно устройство другим (например, устаревший адаптер монитора на новый), надо просто вынуть соответствующую плату из разъема и вставить вместо нее другую. Несколько сложнее осуществляется замена самой материнской платы.

Блок-схема. Изобразим изложенные сведения об устройстве компьютера на блок-схеме (рис. 3). Заметим, что на ней контроллер клавиатуры показан на системной плате — так обычно и делается, поскольку это упрощает изготовление, компьютера. Иногда на системной плате размещаются и контроллеры других устройств.

Контроллеры портов ввода-вывода. Одним из контроллеров, которые присутствуют почти в каждом компьютере, является контроллер портов ввода-вывода. Эти порты бывают следующих типов:

— параллельные (обозначаемые LPT1-LPT4), к ним обыкновенно подключаются принтеры;

— асинхронные последовательные (обозначаемые СОМ1-СОМЗ). Через них обычно подсоединяются мышь, модем и т.д.;

— игровой порт — для подключения джойстика.

Рис. 3. Блок-схема устройства компьютера

Некоторые устройства могут подключаться и к параллельным, и к последовательным портам. Параллельные порты выполняют ввод и вывод с большей скоростью, чем последовательные (за счет использования большего числа проводов в кабеле).

Микропроцессор

Микропроцессор является «мозгом» компьютера. Он осуществляет выполнение программ, работающих на компьютере, и управляет работой остальных устройств компьютера. Скорость его работы во многом определяет быстродействие компьютера. В IBM PC используются микропроцессоры, разработанные фирмой Intel, а иногда — совместимые с ними микропроцессоры других фирм.

Характеристики микропроцессоров. Микропроцессоры отличаются друг от друга двумя характеристиками: типом (моделью) и тактовой частотой. Наиболее распространены модели Intel-8088, 80286, 80386SX, 80386, 80486, Pentium, Pentium Pro, Pentium II, Pentium III они приведены в порядке возрастания производительности и цены. Одинаковые модели микропроцессоров могут иметь разную тактовую частоту, — чем выше тактовая частота, тем выше производительность и цена микропроцессора.

Тактовая частота указывает, сколько элементарных операций (тактов) микропроцессор выполняет в одну секунду. Тактовая частота измеряется в мегагерцах (МГц). Следует заметить, что разные модели микропроцессоров выполняют одни и те же операции (например, сложение или умножение) за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций. Поэтому, например, микропроцессор Intel-80386 работает раза в два быстрее Intel-80286 с такой же тактовой частотой.

Модели микропроцессоров. Исходный вариант компьютера IBM PC и модель IBM PC XT используют микропроцессор Intel-8088. В начале 80-х годов эти микропроцессоры выпускались с тактовой частотой 4,77 МГц, сейчас они выпускаются, как правило, с тактовой частотой от 166 до 600 МГц. Модели с увеличенной производительностью (тактовой частотой) иногда называются Turbo-XT.

Модель IBM PC AT использует более мощный микропроцессор Intel-80286, и ее производительность приблизительно в 4-5 раз больше, чем у IBM PC XT. Исходные варианты IBM PC AT работали на микропроцессорах с тактовой частотой 6 МГц. Микропроцессор Intel-80286 имеет несколько больше возможностей по сравнению с Intel-8088, но эти дополнительные возможности используются очень редко, так что большинство программ, работающих на AT, будет работать и на XT.

В 1988-1991 гг. большая часть выпускаемых компьютеров была основана на достаточно мощном микропроцессоре Intel-80386. Этот микропроцессор (называемый также 80386DX) работает в 2 раза быстрее, чем работал бы 80286 с той же тактовой частотой. Обычный диапазон тактовой частоты 80386DX — от 25 до 40 МГц. Кроме того, 80386 имеет значительно больше возможностей по сравнению с Intel-8088, в частности содержит мощные средства для управления памятью и команды для 32-разрядных операций (в отличие от 16-разрядных 80286 и 8088).- Поэтому многие производители программного обеспечения разрабатывают программы специально для Intel-80386. Фирмой Intel разработан также микропроцессор Intel-80386SX, он ненамного дороже Intel-80286, но обладает теми же возможностями, что и Intel-80386, только при более низком быстродействии (приблизительно в 1,5-2 раза).

Получивший в последнее время широкое распространение микропроцессор Intel-80486 (или 80486DX) мало отличается от Intel-80386, но его производительность в 2—3 раза выше. Среди его особенностей следует отметить встроенную кэш-память (см. ниже) и встроенный математический сопроцессор. Фирмой Intel также разработаны более дешевый, но менее производительный вариант — 80486SX и более дорогой и более быстрый вариант — 80486DX2. Тактовая частота 80486 обычно находится в диапазоне 33-66 МГц.

В 1993 г. фирмой Intel был выпущен новый микропроцессор Pentium (ранее анонсировавшийся под названием 80586). Этот микропроцессор еще более мощен, особенно при вычислениях над вещественными числами.

Выбор типа микропроцессора. Быстродействие основного микропроцессора во многом определяет скорость работы всего компьютера и, тем самым, диапазон применения компьютера:

• компьютеры на основе микропроцессоров Intel-8088 (или Intel-8086) работают очень медленно, они уже полностью устарели и почти полностью вышли из употребления;

• компьютеры на основе микропроцессора Intel-80286 обеспечивают необходимое быстродействие для набора текстов, ввода исходных данных для бухгалтерских и аналогичных задач, большинства компьютерных игр и т.д. Однако новые компьютеры такого класса покупать вряд ли целесообразно, так как для работы с большинством современных программ с графическим интерфейсом (например, с программами, выполняемыми в среде Windows) они практически не пригодны;

• компьютеры на основе микропроцессоров Intel-80386SX и DX, Intel-80486SX обеспечивают достаточную вычислительную мощность для большинства рабочих мест под управлением как DOS, так и Windows: для программирования, работы с не очень большими базами данных, макетирования несложных изданий и т.д. Однако для комфортной работы в среде Windows лучше приобрести более мощный компьютер;

• микропроцессоры Intel-80486DX и DX2 могут применяться для тех задач, где требуется высокое быстродействие компьютера: для файл-серверов больших локальных сетей, для мощных издательских, графических или анимационных программ, для решения серьезных вычислительных задач и т.д.;

• микропроцессор Pentium занимает все более лидирующие позиции на рынке, особенно в крупных городах. Его целесообразно применять для таких приложений, как воспроизведение видеоизображений в реальном времени, большие задачи трехмерного проектирования и моделирования, создания мощных файл-серверов и многопроцессорных систем.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector