Принцип открытой архитектуры компьютера и современные тенденции развития
Компьютерная архитектура (computer architecture) – это разработанный Джоном фон Нейманом набор правил и методов описания функций, которые участвуют в организации работы компьютерных систем. Впервые документальное упоминание данного термина найдено в переписке английского ученого Чарльза Бэббиджа с писательницей и математиком Адой Лавлейс в первой половине ХХ века.
Понятие архитектуры персонального компьютера (ПК) дает нам представление о том, как он устроен, как разные устройства взаимодействуют друг с другом. Они подсоединяются по определенной схеме, а ее вариации и будут разновидностями архитектурных систем.
Любой современный персональный компьютер или ноутбук – это сложное многофункциональное устройство, а не просто мультиплатформенная игровая приставка. Всего можно выделить пять уровней архитектуры электронно вычислительных машин (ЭВМ):
- нулевой уровень;
- первый уровень – микроархитектура компьютера;
- второй – системные команды;
- третий – операционная система;
- четвертый – прикладные и системные программы;
- пятый – уровень высокого языка.
Классическая архитектура компьютера
Ключевые принципы, в соответствии с которыми предполагалось конструирование ПК по определенной логической схеме, предложил Джон фон Нейман, выдающийся математик. Его идеи были реализованы производителями ПК, относящихся к первым двум поколениям. Концепция, разработанная Джоном фон Нейманом, — это классическая архитектура ПК. Каковы ее особенности? Предполагается, что компьютер должен состоять из следующих основных компонентов:
— арифметического и логического блока;
— устройства для управления;
— блока внешней памяти;
— блока оперативной памяти;
— устройств, предназначенных для ввода и вывода информации.
В рамках данной схемы взаимодействие технологических компонентов должно реализовываться по конкретной последовательности. Так, сначала в память ПК попадают данные из компьютерной программы, которые могут вводиться с помощью внешнего устройства. Затем устройство для управления считывает информацию из памяти компьютера, после чего направляет ее на выполнение. В этом процессе при необходимости задействуются остальные компоненты ПК.
Классический вариант архитектуры компьютера
Первоначальный состав архитектуры компьютера был предложен ученым Нейманом, который был известным математиком. Он изложил основные принципы конструирования персональных компьютеров, учитывая их логическую структуру. Эта методология, которую предложил Нейман, взята за основу классической архитектуры персонального компьютера. В его состав должны входить следующие основные элементы:
- логико-арифметический блок;
- управленческий блок;
- блок устройства внешней памяти;
- блок оперативной памяти;
- блок ввода-вывода данных.
В соответствии с этой структурой, должен быть соблюден определенный порядок работы элементов компьютера. Изначально производится загрузка информации в память компьютера из программы, что выполняется. Для ввода данных используются внешние устройства компьютера. После этого блок управления переносит эти данные из блока памяти в блок обработки информации. Обработка происходит с помощью различных элементов компьютера.
Содержание
Выделяют несколько уровней организации компьютера (компьютерной архитектуры), от двух и более: [3]
Уровень 0 Цифровой логический уровень, это аппаратное обеспечение машины, состоящий из вентилей. См. также Логические элементы (защелки), триггеры, регистры Уровень 1 Микроархитектурный уровень, интерпретация (микропрограммы) или непосредственное выполнение. Электронные схемы исполняют машинно-зависимые программы. Совокупность регистров процессора формирует локальную память. См. также арифметико-логическое устройство, устройство управления. Уровень 2 Уровень архитектуры системы команд, трансляция (ассемблер). Уровень 3 Уровень операционной системы, трансляция (ассемблер). Это гибридный уровень: одна часть команд интерпретируется операционной системой, а другая — микропрограммой. См. также виртуальная память, файлы. Уровень 4 Уровень языка ассемблера, трансляция (компилятор). Четвертый уровень и выше используется для написания прикладных программ, с первого по третий — системных программ. Программы в удобном для человека виде транслируются на язык уровней 1-3. Уровень 5 Язык высокого уровня. Программы на языках высокого уровня транслируются обычно на уровни 3 и 4.
ЭВМ четвертого поколения
Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.
Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.
С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.
Персональные компьютеры: классификация
Как мы отметили выше, ПК могут быть классифицированы на большое количество разновидностей. В числе таковых: десктопы, ноутбуки, планшеты, КПК, смартфоны — объединяющие в себе ПК и телефоны.
Как правило, самыми мощными и производительными архитектурами обладают десктопы; наименее мощные — смартфоны и планшеты в связи с небольшими размерами и необходимостью существенно уменьшать ресурсы аппаратных компонентов. Но многие из соответствующих девайсов, особенно топовых моделей, по скорости работы, в принципе, сопоставимы с ведущими моделями ноутбуков и бюджетными десктопами.
Отмеченная классификация ПК свидетельствует об их универсальности: в тех или иных разновидностях они могут решать типичные пользовательские задачи, производственные, научные, лабораторные. ПО, архитектура компьютерных систем соответствующего типа во многих случаях адаптированы к использованию рядовым гражданином, не имеющим специальной подготовки, которая может потребоваться человеку, работающему с мейнфреймом или же мини-ЭВМ.
Когда появился первый компьютер?
На протяжении всей истории существования человека он то и дело пытался совершенствовать мир вокруг, чтобы улучшить свою жизнь сделать ее проще и комфортнее. История создания компьютера – это прежде всего стремление человека изобрести устройство для решения задач, непосильных для человеческого разума. И как показывает практика, задача эта исполнена на «ура».
Если вы думаете, что компьютер появился несколько десятилетий назад, то глубоко заблуждаетесь, ведь его история насчитывает несколько столетий. Конечно же, первые предки современного ПК были очень примитивными и даже язык не поворачивается назвать их «компьютерами», но не пройдя всех этих этапов становления он, возможно, не стал таким чудом техники.
Итак, первым созданным компьютером в истории человечества считается машина для подсчетов Блеза Паскаля, возникшая в 1642 году. Это был первый примитивный калькулятор, который помогал изобретателю слагать и вычитать. Изобретение Паскаля считается нулевым этапом в разработке компьютеров и для своего времени это было прогрессивное устройство, ведь ранее никаких попыток механизировать вычисления не было.
Придуманный Паскалем «компьютер» назвали «Паскалина» и представлял он собой ящик с многочисленными шестернями. С помощью колесиков прибор позволял вводить числа от 0 до 9, а в верхней части корпуса, после ввода исходных данных, показывался результат.
Аппарат Паскаля – первый компьютер
Истоки
Одной из первых появилась в середине прошлого века классическая архитектура персонального компьютера, авторство которой принадлежит Д. Нейману. В статье, изданной Д. Нейманом, Г. Голдштейном и А. Бёрксом были изложены основы конструкции и работы ЭВМ, благодаря этим знаниям и появились новые устройства, которые к нашему времени стали повсеместно доступны и распространены. Конечно, каждый новый выпуск устройств отличался от предыдущего: его характеристики улучшались, модифицировались, добавлялись новые функции, но основа, которой являются сформулированные принципы, оставалась неизменной.
Данные принципы заключаются в следующем:
- Машинам гораздо проще использовать двоичный код счисления и руководствоваться им при выполнении различных операций.
- Для корректной и системной работы компьютера, ему необходима операционная система. Она служит некой главной программой, которая запускает и контролирует внутренние процессы устройства. Без открытия этого факта, было бы невозможным развитие программирования, так как операционная система в современных компьютерах является базисом его работы.
- У персонального компьютера есть память, которая позволяет хранить какой-то объём данных, включая различные программы. При этом все данные и произведённые с ними операции кодируются в двоичном коде.
- Благодаря тому, что каждая ячейка памяти имеет свой адрес, компьютер в любой момент времени может обратиться к какой-то из них. Данное открытие позволило программированию перейти к использованию переменных.
- Любая часть кода доступна практически в любой момент. Это доказывается тем, что при использовании какой-либо программы, пользователь имеет возможность перейти к использованию другой. Причём эти процессы происходят параллельно друг другу.
Главная особенность заключается в том, что аппаратура остаётся статичной, в то время как набор программ может меняться.
Структура персонального компьютера, предложенная Д. Нейманом, изображена на данной схеме (рис. 1).
Рисунок 1. Структура персонального компьютера
Таким образом, в состав компьютера входили такие части как внешнее и оперативное запоминающее устройство, устройство ввода, устройство вывода, устройство управления (координация) и устройство выполнения арифметико-логических операций.
Конспект урока «Архитектура персонального компьютера»
На этом уроке мы с вами познакомимся с магистрально-модульным принципом построения компьютера, узнаем, что относится к основным логическим узлам компьютера, рассмотрим, какие устройства находятся на материнской плате, и многое другое.
Компьютер – это многофункциональное электронное устройство, предназначенное для накопления, обработки и передачи информации.
К основным логическим узлам компьютера относятся центральный процессор, основная память, внешняя память, периферийные устройства.
Персональные компьютеры начали появляться благодаря развитию микропроцессоров в 1980-х годах.
Архитектура персонального компьютера – это логическая организация, структура и ресурсы, то есть средства вычислительной системы, которые могут быть выделены процессу обработки данных на определённый интервал времени.
В основе архитектуры современных персональных компьютеров лежит магистрально-модульный принцип. Давайте рассмотрим рисунок.
Итак, перед вами изображена архитектура персонального компьютера. На ней изображены функциональные блоки персонального компьютера, к которым относятся устройства ввода/вывода, внешние запоминающие устройства, центральный процессор, память и видеопамять. Все эти блоки соединены между собой информационной магистралью, которая называется системной шиной. Она состоит из трёх частей: шина данных, шина адреса, шина управления. Шина данных используется для передачи данных к функциональным блокам. Шина адреса предназначена для передачи адресов устройств, которым передаются данные. И последняя, шина управления используется для передачи управляющих сигналов, которые синхронизируют работу разных устройств. То есть через шину передаются все данные от одного устройства к другому.
Также на рисунке у нас есть такие элементы, как контроллеры. Контроллеры – это периферийные устройства, которые управляют внешними устройствами. Передача всех данных осуществляется через шину.
Также мы можем видеть на рисунке сплошные и пунктирные стрелки. Сплошными стрелками изображены направления потоков информации, а пунктирными – направление управляющих сигналов.
В этой архитектуре существует такое значительное достоинство, как принцип открытой архитектуры. То есть мы можем подключать к компьютеру новые устройства или заменять старые на более современные. Для каждого типа и модели устройства используется свой контроллер.
Например, если мы подключим компьютерную мышь через USB-порт, то она определится у нас на компьютере только после установки в операционную систему специальной программы для управления этим устройством. Такие программы называются драйверами устройств.
Таким образом, можно сформулировать следующее определение: открытая архитектура персонального компьютера – это архитектура, предусматривающая модульное построение компьютера с возможностью добавления и замены отдельных устройств.
Это то, что касается принципов обмена информацией между устройствами.
Материнская плата – это сложная многослойная печатная плата, являющаяся основой построения вычислительной системы.
Изначально дополнительные устройства (например, внутренний модем, сетевой адаптер беспроводной связи Wi-fi, звуковая плата и так далее) подключались к материнской плате с помощью слотов расширения и разъёмов.
В наше время такая необходимость отпала, так как большинство дополнительных устройств уже встроены в современные материнские (системные) платы.
Основными (несъёмными) частями материнской платы являются разъём процессора, разъёмы оперативной памяти, микросхемы чипсета, загрузочное ПЗУ, контроллеры шин и их слоты расширения, контроллеры и интерфейсы периферийных устройств.
Важнейшей частью материнской платы является чипсет. Чипсет – это набор микросхем, который связывает память, процессор, видеоадаптер, устройства ввода/вывода и другие элементы персонального компьютера, для выполнения совместных функций.
В современных компьютерах находятся две основные большие микросхемы чипсета: контроллер-концентратор памяти (северный мост) и контроллер-концентратор ввода/вывода (южный мост).
Давайте рассмотрим схему архитектуры персонального компьютера.
Северный мост отвечает за работу процессора с оперативной памятью и видеосистемой. От его параметров (тип, частота, пропускная способность) зависят параметры подключённых к нему устройств: системной шины, оперативной памяти, видеоадаптера. Северный мост подключается напрямую к центральному процессору через системную шину.
Южный мост обеспечивает работу с внешними устройствами и обычно подключается к центральному процессору через северный мост при помощи внутренней шины.
Все устройства компьютера соединены между собой шинами различных видов.
Быстродействие процессора, оперативной памяти и периферийных устройств существенно различаются. Быстродействие устройства, в свою очередь, зависит от тактовой частоты обработки данных, которая обычно измеряется в мегагерцах, и разрядности. Разрядность – это количество битов данных, обрабатываемых за один такт. Такт – это промежуток времени между подачами электрических импульсов, которые синхронизируют работу устройств компьютера.
Пропускная способность шины – это скорость передачи данных между устройствами, которые она соединяет. А исходя из вышесказанного, можно сделать вывод, что скорость передачи данных различных шин будет также отличаться. Рассмотрим формулу для вычисления пропускной способности шины (измеряется в битах в секунду). Она равна произведению разрядности шины и частоты шины. Разрядность измеряется в битах, частота – в герцах, в свою очередь, 1 герц равен 1 такту в секунду.
Например, для быстрой работы компьютера пропускная способность шины оперативной памяти должна совпадать с пропускной способностью шины процессора.
Как говорилось ранее, Северный мост связан с процессором системной шиной. Например, если разрядность системной шины составляет 64 бита, а частота – 1066 МГц, то пропускная способность будет равна:
64 · 1066 = 68 224 Мбит/с ≈ 66,6 Гбит/с ≈ 8 Гбайт/с.
Перейдём к частоте процессора. Тактовая частота процессора показывает, сколько процессор может произвести вычислений в единицу времени. Из этого следует вывод, что чем больше частота, тем больше операций в единицу времени может выполнить процессор. Тактовая частота современных процессоров составляет от 1 до 4 ГГц. Рассмотрим формулу. Тактовая частота равна произведению внешней или базовой частоты на определённый коэффициент. Коэффициент зависит от характеристик процессора. Например, процессор Intel Core i7 920 использует частоту шины 133 МГц и множитель 20. Значит, тактовая частота будет равна:
133 · 20 = 2660 МГц.
Шина памяти соединяет оперативную память и северный мост, и, соответственно, служит для передачи данных между этими устройствами.
Частота шины памяти может быть больше частоты системной шины.
Следующая шина, которую мы рассмотрим, – PCI Express. Она соединяет видеоплату с северным мостом.
Так как в наше время очень быстро развивается компьютерная графика, то потребность в скорости передачи данных от видеоплаты к оперативной памяти и процессору возрастает. Наибольшее распространение получила шина PCI Express – это ускоренная шина взаимодействия периферийных устройств. Её пропускная способность может достигать до 32 гигабайт в секунду.
К самой же видеоплате с помощью аналогового разъёма VGA (графический адаптер) или цифрового разъёма DVI (цифровой видеоинтерфейс) подключается монитор или проектор.
Жёсткие диски, CD-дисководы, DVD-дисководы подключаются к южному мосту при помощи шины SATA – это последовательная шина подключения накопителей.
Скорость передачи данных по ней может достигать 300 Мбайт в секунду.
Для подключения периферийный устройств (принтера, клавиатуры, сканера и других), которые имеют USB-выход, к южному мосту используется шина USB – это универсальная последовательная шина.
Её пропускная способность достигает 60 Мегабайт в секунду. При помощи шины USB к компьютеру можно одновременно подключить до 127 периферийных устройств.
При увеличении производительности процессора происходит увеличение производительности самого компьютера.
Увеличение производительности процессора происходит за счёт увеличения частоты. Но, как говорится, всему есть свой предел. При увеличении частоты процессора происходит также увеличение тепловыделения, которое не может быть не ограниченным. Выделение процессором теплоты Q пропорционально потребляемой мощности P, которая, в свою очередь, пропорциональна квадрату частоты.
Поэтому для того, чтобы увеличить производительность процессора, начали увеличивать количество ядер процессора (арифметических логических устройств).
В 2005 году был создан первый двухъядерный микропроцессор. Это сделали практически одновременно две фирмы – Intel и AMD. Такая архитектура позволяет производить на персональном компьютере параллельную обработку данных, что существенно увеличивает его производительность. Можно сказать, что в архитектуре находятся 2 центральных процессора, работа которых согласована между собой, и они объединены между собой, например, контроллером. За счёт этого поток данных идёт не к одному центральному процессору, а разделяется на два. И увеличивается быстродействие компьютера.
В настоящее время количество ядер в микропроцессорах достигает 8.
А сейчас пришло время подвести итоги урока.
Сегодня мы с вами познакомились с магистрально-модульным принципом построения компьютера. Рассмотрели, какие устройства находятся на материнской плате. А также подробно ознакомились с архитектурой персонального компьютера.