Как соединить два вентилятора на компьютер

Два последовательно состыкованных кулерных вентилятора ?

Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!

Уже есть аккаунт? Войти в систему.

Последние посетители 0 пользователей онлайн

Ни одного зарегистрированного пользователя не просматривает данную страницу

  • Уже зарегистрированы? Войти
  • Регистрация

Главная

Активность

  • Создать.


Вентиляция

В практике построения вентиляционных систем используют совместную работу двух или нескольких вентиляторов в различных комбинациях. Интересно, что при этом потребители (проектировщики) зачастую не подозревают, что они используют схемы с последовательной или параллельной работой вентиляторов или воздухоприточных установок. Примером последовательной работы служат вентиляторы-доводчики, устанавливаемые в сети для подачи воздуха в тупиковые ветви, а параллельной работы — разветвленные сети с различным сочетанием входов/выходов вентиляторов или воздухоприточных установок. Нам известны многочисленные случаи неудовлетворительной работы вентиляционных установок, которые связаны с несогласованной работой вентиляторов, т.е. с их неправильным подбором. Ниже приведены особенности совместной работы вентиляторов, даны примеры удачного и неудачного подбора вентиляторов. Мы надеемся, что понимание процессов, имеющих место при совместной работе вентиляторов, позволит избежать типичных ошибок. Более подробно о совместной работе вентиляторов можно прочитать в [1, 2].

Последовательное соединение вентиляторов. В ряде случаев для увеличения производительности в сетях с большим сопротивлением вместо замены вентилятора на больший типоразмер целесообразно последовательно установить дополнительный вентилятор. Обычно последовательно включают в работу осевые вентиляторы, имеющие относительно небольшие давления. В этом случае получается многоступенчатый вентилятор с одинаковыми рабочими колесами, между которыми установлены спрямляющие аппараты для раскручивания потока до осевого направления перед последующим колесом. Исключительно редко используют последовательную работу радиальных вентиляторов со спиральным корпусом из-за сложности компоновки. Канальные радиальные вентиляторы, особенно вентиляторы, выполненные по прямоточной схеме, имеют компоновочное преимущество, что позволяет использовать их последовательное соединение. Ряд производителей с целью повышения давления предлагают установки, состоящие из двух последовательно установленных канальных вентиляторов [3].

При последовательной работе двух вентиляторов они имеют одинаковую производительность. Суммарную характеристику системы из двух вентиляторов можно получить сложением их давления (ординаты) при фиксированной производительности. Для упрощения анализа совместной работы вентиляторов в дальнейшем не будем учитывать увеличения сопротивления сети при установке второго вентилятора. Аэродинамическая характеристика суммарной работы двух одинаковых вентиляторов приведена на рис. 1 . Вентиляторы имеют производительность QP, рабочим режимом каждого из вентиляторов является точка А, а системы из двух вентиляторов — точка В, давление в которой равно сумме давлений двух вентиляторов. Рассмотрим совместную работу двух вентиляторов, имеющих различные аэродинамические характеристики ( рис. 2, а ). Вентилятор 2 является «основным», а вентилятор 1 — «дополнительным», служащим для увеличения производительности «основного» вентилятора. Режимом совместной работы вентиляторов является точка С. Рабочим режимом «основного» вентилятора является точка В, а «дополнительного» — точка А, при этом каждый из вентиляторов имеет производительность QP. Если бы «основной» вентилятор работал один, то его рабочим режимом была бы точка Д, а производительность вентилятора — Qд.

За счет установки «дополнительного» вентилятора производительность была увеличена на величину QP – Qд. Если производительность «основного» вентилятора при работе в данной сети Qд меньше максимальной производительности «дополнительного» вентилятора Q1max, то установка «дополнительного» вентилятора приводит к увеличению производительности.

Рассмотрим случай неудачного подбора «дополнительного» вентилятора, максимальная производительность которого Q1max меньше производительности «основного» вентилятора Qд при его одиночной работе ( рис. 2, б ). Режимом совместной работы вентиляторов является точка С. Рабочим режимом «основного» вентилятора является точка В, а «дополнительного» — точка А, каждый из вентиляторов имеет производительность QP. Если бы «основной» вентилятор работал один, то его рабочим режимом была бы точка Д, а производительность вентилятора — Qд. «Дополнительный» вентилятор в этом случае работает в «турбинном» («флюгерном») режиме и является аэродинамическим сопротивлением для основного вентилятора. Это приводит к тому, что производительность основного вентилятора при установке дополнительного уменьшилась на величину Qд – QP. Но при этом необходимо помнить, что кроме уменьшения производительности «основного» вентилятора «дополнительный» вентилятор потребляет соответствующую мощность! Это типичная ситуация неправильного подбора дополнительного вентилятора, служащего для увеличения производительности в вентсистеме. Рассмотрим последовательную работу вентиляторов с разной производительностью (основной вентилятор и вентиляторы-доводчики). Если сеть имеет длинные ответвления или тупиковую ветвь с небольшой производительностью, то в ряде случаев основной вентилятор целесообразно подбирать на заданную суммарную производительность, но меньшее давление (без учета сопротивления ответвлений), а в ответвления последовательно устанавливать вентиляторы-доводчики [4]. Особенностью работы вентиляторов-доводчиков является то, что они имеют меньшую производительность, чем основной вентилятор. Перед вентилятором-доводчиком рекомендуется иметь некоторый избыток давления 50-100 Па, чтобы избежать обратных токов в предыдущих воздуховыпускных устройствах. На рис. 3 показан пример сети с вентиляторами-доводчиками.

Основной вентилятор 1 имеет производительность Q1 и полное давление p*v1, равное сопротивлению первого участка ΣΔр1 плюс избыточное давление (полное) перед первым вентилятором-доводчиком p*2. Первый вентилятор-доводчик имеет производительность Q2 = Q1 – Qв1 (здесь Qв1 — расход через первые воздуховыпускные решетки).

Полное давление первого вентилятора-доводчика равно:
p*v2 = ΣΔр1 + (p*3 – p*2),
т.е. равно потерям в сети 2 плюс разница полных давлений за и перед вентилятором-доводчиком (в потери должно входить динамическое давление потока на выходе из выпускных решеток). Если вентилятор-доводчик установлен один в системе, то p*3 = 0 и его давление равно p*v2 = ΣΔр2 – p*2. Если подпор перед вентиляторами-доводчиками принимается одинаковым, то давление вентилятора доводчика равно потерям в сети 2, т.е. p*v2 = ΣΔр2. Характеристика первого вентилятора-доводчика приведена на рис. 3 . Если в системе несколько вентиляторов-доводчиков с одинаковым избыточным давлением, то рабочим режимом первого вентилятора-доводчика является точка В. Если вентилятор-доводчик установлен один, то его рабочим режимом является точка А, являющаяся точкой пересечения характеристики вентилятора и сети с учетом избыточного давления перед вентилятором. В ряде случаев неучет избыточного давления может привести к завышению производительности вентилятора-доводчика, которое может быть компенсировано при настройке вентсистемы.

В заключение анализа последователь ной работы вентиляторов необходимо обратить внимание на одно важное обстоятельство: какого бы типа не были вентиляторы, второй вентилятор не рекомендуется ставить непосредственно за первым, поскольку на выходе вентилятора поток всегда имеет пространственную неоднородность на любых режимах работы. Например, поток на выходе из канального вентилятора с круглым корпусом или осевого вентилятора без спрямляющего аппарата всегда имеет некоторую остаточную закрутку; течение на выходе канального вентилятора с прямоугольным корпусом всегда имеет пространственную неравномерность, поскольку потоком занято не все выходное сечение и т.д. Для исключения влияния предыдущего на последующий вентилятор необходимо, чтобы перед ним был отрезок прямого воздуховода длиной в несколько гидравлических диаметров для сглаживания пространственной и временной неоднородности потока.

Параллельная работа вентиляторов.
Параллельную установку вентиляторов используют в случаях, когда необходимо увеличить производительность в сети; необходимо иметь разную производительность, в зависимости от сезона работы; для эффективного регулирования производительности в ветвях вентсистемы и т.д. Чтобы получить суммарную характеристику системы из двух вентиляторов, необходимо сложить их производительности (абсциссы) при фиксированном давлении. При анализе параллельной работы вентиляторов, как и в первом случае, не учитываем увеличения сопротивления сети при установке «дополнительного» вентилятора. Аэродинамическая характеристика двух одинаковых параллельно работающих вентиляторов приведена на рис. 4 .

Рабочим режимом каждого из вентиляторов является точка А, а системы из двух вентиляторов — точка В. Вентиляторы имеют равные производительности Q1 и Q2, а суммарная производительность системы равна их удвоенной производительности Q1+2. Рассмотрим совместную работу двух различных вентиляторов ( рис. 5 ), один из которых является «основным», а другой — «дополнительным», установленным, например, для увеличения производительности «основного». Для построения суммарной аэродинамической характеристики необходимо иметь характеристику «дополнительного» вентилятора в 4 квадранте (режим обратного течения через вентилятор). Теоретическая кривая совместной работы, полученная сложением производительностей двух вентиляторов, имеет особый начальный участок E-F, на котором максимальное давление p*v1max «дополнительного» вентилятора меньше, чем у «основного» (здесь точка F на характеристике совместной работы соответствует давлению p*v1max на режиме заглушки «дополнительного» вентилятора). Существует два режима совместной параллельной работы вентиляторов, которые определяются сопротивлением сети. Рассмотрим случай, когда сопротивление сети не превышает максимальное давление «дополнительного» вентилятора p*v1max ( рис. 5, а ). Режимом совместной работы вентиляторов является точка С, рабочим режимом «основного» вентилятора является точка В, а «дополнительного» вентилятора — точка А. Если бы «основной» вентилятор работал один, то его рабочим режимом была бы точка Д, а производительность — Qд.

За счет установки «дополнительного» вентилятора производительность при совместной работе была увеличена на величину Q1+2 – Qд. Такой режим характеризуется относительно устойчивой работой двух вентиляторов. Рассмотрим случай неудачного подбора «дополнительного» вентилятора, при котором сопротивление сети превышает его максимальное давление p*v1max ( рис. 5, б ). Теоретически режимом совместной работы двух вентиляторов является точка С, совместная производительность двух вентиляторов — Q1+2. Рабочим режимом «основного» вентилятора — является точка В, а рабочим режимом «дополнительного» — точка А, причем через «дополнительный» вентилятор в режиме противодавления идет отрицательный расход — Q1 (знак минус!) снижающий общую производительностьсистемы из двух вентиляторов.

Суммарная производительность системы Q1+2 меньше производительности одиночно работающего основного вентилятора Qд. В действительности же и «основной», и «дополнительный» вентиляторы работают в нестационарном режиме. Через «дополнительный» вентилятор имеют место нестационарные во времени (периодические) прорывы воздуха, сопротивление сети периодически изменяется, что приводит также к неустойчивой работе и «основного» вентилятора (особенно, если он работает в области срывных режимов). При этом «дополнительный» вентилятор потребляет определенную мощность! Необходимо всячески избегать подобных режимов работы вентиляторов, т.к. увеличенная нагрузка и ее периодические изменения могут привести к сгоранию электродвигателя «дополнительного» вентилятора. В крайнем случае, вход или выход «дополнительного» вентилятора необходимо перекрывать воздушным клапаном.

При параллельной работе двух вентиляторов имеет значение, как объединены их входы и выходы и как используется скоростной напор в каналах до и после вентиляторов. От этого может зависеть уровень неустойчивости выбранного режима. Например, если перед вентиляторами установлен тройник с ответвлениями под прямыми углами, то в таком тройнике, кроме потери скоростного напора, наблюдается интенсивное вихреобразование, которое может повлиять на работу вентиляторов и понизить порог устойчивой работы при их параллельном соединении.

В этом смысле тройник с плавными формами предпочтительнее. То же самое можно сказать и об объединяющем тройнике на выходе вентиляторов. Выше были рассмотрены режимы параллельной работы вентиляторов с монотонно падающими кривыми зависимости давления от производительности. Это характерно, например, для радиальных вентиляторов с загнутыми назад лопатками или для слабонагруженных осевых вентиляторов. Для таких вентиляторов характерны не сильно выраженные зоны неустойчивой работы в области малых производительностей и не очень интенсивные колебания аэродинамических параметров в этих областях. Радиальные вентиляторы с барабанными колесами (с вперед загнутыми лопатками) имеют провал характеристики в зоне малых производительностей. Некоторые схемы высоконагруженных осевых вентиляторов имеют разрыв характеристик с сильно развитой неустойчивостью течения. Такие режимы являются нежелательными, их следует избегать. Особенно непредсказуемые последствия (по колебаниям давленияи неоднозначности положения рабочей точки) могут возникнуть при параллельной работе таких вентиляторов.

Примерами неудачной параллельной работы вентиляторов с объединенным входом является, например, работа нескольких приточных установок различной производительности с общей «зажатой» шахтой; а неудачной работы с объединенным выходом — например, работа оконного вентилятора на нагнетание в помещение с организованным притоком, но с несбалансированной вытяжкой и т.д. Интересно рассмотреть некоторые особенности работы радиального вентилятора двустороннего всасывания, который является примером параллельной работы двух одинаковых вентиляторов с объединенными входами и выходами ( рис. 6 ). Теоретически производительность вентилятора равна удвоенной производительности каждого. В действительности у вентиляторов двустороннего всасывания, как правило, используется шкивоременная передача, подходящая к валу рабочего колеса со стороны одного из всасывающих отверстий. Поэтому оно загромождено концом вала со шкивом и, кроме того, вращение шкива обеспечивает подкрутку потока на входе в вентилятор по вращению и эта сторона вентилятора работает хуже, чем вторая, со свободным входом потока.

Таким образом, в ряде случаев вентилятор с двусторонним входом необходимо рассматривать как параллельную работу двух вентиляторов с различными характеристиками, со всеми эффектами, описанными выше. Если же вентилятор двустороннего всасывания установлен в приточной установке, то положение усугубляется тем, что для уменьшения ее габаритов расстояние между всасывающими отверстиями и стенкам принимается минимальным, что приводит к ухудшению характеристик стороны закрытой шкивоременной передачей.

Литература
1. Экк. Б. Проектирование и эксплуатация центробежных и осевых вентиляторов. — М.: Госгортехиздат, 1959.
2. Центробежные вентиляторы/ Под ред. Т.С. Соломаховой. М.: Машиностроениe, 1975.
3. Каталог фирмы HELIOS.
4. Караджи В.Г., Московко Ю.Г. Некоторые особенности эффективного использования вентиляционно-отопительного оборудования. — М., 2004.

Припайка проводов USB кабеля к вентилятору

Компьютерные вентиляторы могут иметь двух, трех или четырех контактные разъемы для подключения. В настоящее время действует стандарт по цветам проводов и номерам выводов разъемов кулеров. Но ранее цветовая маркировка была произвольной, и производители выбирали цвета по внутренним стандартам. Поэтому если будете использовать кулер от старого компьютера, то лучше ориентироваться по разъему.

Распайка проводов на плате кулера

Для того, чтобы добраться до места пайки проводов кулера нужно отклеить этикетку. Как оказалось в этом кулере цвета не соответствовали стандарту. Вместо провода красного цвета использовался желтый, а вместо желтого – зеленый. Кстати, если попутать полярность подключения кулера, то он не будет вращаться и не выйдет из строя.

Доработка фиксатора кулера для кабеля USB кабеля

После отпайки штатных проводов кулера для фиксации USB кабеля пришлось с помощью овального надфиля расширить входное отверстие в корпусе.

Фиксация USB кабеля на кулере

Осталось только припаять к печатной плате кулера провода USB и закрепить кабель хомутом. Вместо хомута можно воспользоваться ниткой.

USB самодельный вентилятор для мини-ПК

Самодельная система внешнего охлаждения мини-ПК изготовлена и осталось только проверить ее в работе и провести испытания.

USB самодельный вентилятор установлен на корпус мини-ПК

Вентилятор был просто положен на мини-ПК и включен в его USB разъем. На расстоянии метра в полной тишине шум работающего кулера не прослушивался.

Распиновка вентиляторов: основные их отличия

Если предоставить краткую техническую характеристику этим устройствам охлаждения, то вентиляторы PWM поставляются с 4-контактными разъемами. Они имеют полностью автоматическое управление скоростью вращения крыльчатки через 4-контактные разъемы PWM на материнской плате.

Обратите внимание, что 4-контактные вентиляторы также могут быть подключены к 3-контактным электроразъемам на вашей системной плате. При подключении к 3-контактным коннекторам, кулер будет работать на полной скорости (если системная плата не поддерживает управление скоростью на основе напряжения).

Распиновка вентиляторов-2

Вентиляторы с распиновкой 4 pin в основном применяются в более современных системных платах. К тому, же они показали высокую эффективность при использовании их для принудительного охлаждения центрального процессора компьютера, в то время традиционные могут иметь только три коннектора. Понять для чего это нужно, по моему элементарно.

Вентиляторы имеющие распиновку под четыре ножки считаются более эффективными, так как способны контролировать скоростной режим вращения рабочего колеса вентилятора. Для этого кулеры используют широтно-импульсную модуляцию, тем самым гарантирую высокую производительность принудительного охлаждения ЦП.

Цоколевка разъема-3

Создается такой контроль за счет наличия 4-го добавочного провода, с помощью которого подается команда от микросхемы управления на вентилятор. Что касается вентиляторов с распиновкой разъема на три провода, то они также располагают сигнальным проводом. Однако скорость вращения крыльчатки обусловливается изменением напряжения на кабеле питания.

Маркировка проводов

  • +12 В – Кр (Жл).
  • -12 В – всегда черный.
  • Линия тахометра – Жл (Зел).
  • Управление скоростью – синий.

Распиновка блока питания компьютера
Распиновка разъема кулера

Если вентилятор довольно сильно шумит, то его можно запитать не 12 В, а семью (подключение к крайним выводам) или пятью (к красному). Провод «земля», как отмечено выше, всегда черный.

В некоторых статьях даются рекомендации по изменению скорости вращения крыльчатки с помощью ограничительных резисторов. Их мощность – порядка 1,2 – 2 Вт, и размеры соответствующие. Уже – не совсем удобно. В общем, с этим понятно. Но вот по каким критериям подобрать номинал сопротивления, если пользователь с эл/техникой в лучшем случае всего лишь на «вы»? А в худшем – никак.

Автор советует не экспериментировать и при желании включить в цепь диод. Независимо от типа он обязательно обеспечит определенное падение напряжения порядка от 0,6 до 0,85 вольт. Если требуется снизить номинал еще больше, можно последовательно задействовать 2 – 3 полупроводника. Для этого не нужно заниматься инженерными расчетами или консультироваться со специалистом.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector