Как отремонтировать компьютерный БП

Ремонт блоков питания для ПК своими руками: пошаговая распиновка, запуск БП от компьютера

Блок питания является самым важным и обязательным компонентом любого системного блока. Он отвечает за формирование напряжения, что позволяет обеспечивать питание для всех блоков ПК. Также, немаловажная его функция заключается в устранении утечки тока и паразитных токов при сопряжении устройств.

Для создания гальванической развязки, требуется трансформатор с большим количеством обмотки. Исходя из этого, компьютер требует весьма большой мощности и естественно, что подобный трансформатор для ПК должен быть габаритным и с немалым весом.

Но из-за частоты тока, который требуется для создания магнитного поля, требуется намного меньшее количество витков на трансформаторе. Благодаря этому, при использовании преобразователя, создаются небольшие и лёгкие блоки питания.

Блок питания – на первый взгляд довольно непростой прибор, но если случается не особо серьёзная поломка, то его вполне реально отремонтировать самостоятельно.

Ниже представлена стандартная схема БП. Как видно ничего сложного нет, главное выполнять всё поочерёдно, чтобы не было путаницы:

схема компьютерного блока питания

Схема классического блока ATX

Любой ремонт компьютерного блока питания, как электронного устройства, начинается со схемы. С приобретением опыта она становится все менее необходимой, часть неисправностей находится визуальным осмотром, другие проблемы определяются как типовые – мастер со стажем уже знает, что обычно ломается в тех или иных БП. Однако жизнь иногда подбрасывает сложные загадки, при которых без принципиальной схемы даже опытному мастеру не обойтись.

Для начинающего ремонтника принципиальная схема просто необходима. Но для поиска неисправностей прежде всего надо разобрать работу импульсного блока питания по его блок-схеме. Практически все источники собраны по одному принципу (хотя схемотехника конкретных узлов от производителя к производителю может отличаться).

Возможные причины неисправности и ремонт компьютерного блока питания

Блок-схема компьютерного БП.

Сетевое напряжение сначала поступает на фильтр. На работу источника он никакого влияния не оказывает, но этот узел необходим для защиты питающей сети от помех, генерируемых самим устройством. Дальше сетевое напряжение выпрямляется и поступает на основной инвертор, обычно выполненный на транзисторных ключах. За открывание и закрывание транзисторов отвечает схема управления. При выключенном компьютере, но поданном сетевом напряжении, она питается от схемы формирования дежурного напряжения. Это напряжение также подается на материнскую плату компьютера, запитывая участки, ответственные за запуск ПК.

На схеме не показаны узлы защиты и схема обработки сигнала от матплаты Power_ON, дающего разрешение на запуск инвертора.

Выпрямленное напряжение 220 вольт преобразовывается инвертором в импульсное частотой в несколько десятков килогерц и подается на первичную обмотку трансформатора. Во вторичных обмотках индуцируется ЭДС таким же образом, как в обычном сетевом трансформаторе. За счет высокой частоты преобразования габариты трансформатора получаются компактными, а само устройство легким.

Напряжения вторичных обмоток выпрямляются и фильтруются. С помощью цепей обратной связи осуществляется стабилизация выходного напряжения и ограничение тока.

Что желательно иметь для ремонта и проверки Блока Питания?

а. — любой тестер (мультиметр).
б. — лампочки: 220 вольт 60 — 100 ватт и 6.3 вольта 0.3 ампера.
в. — паяльник, осциллограф, отсос для припоя.
г. — увеличительное стекло, зубочистки, ватные палочки, технический спирт.

Как отремонтировать компьютерный БП?

Выбор и расчет трансформатора

Блок питания рассчитан на мощность нагрузки 300-400 Вт, основная часть из которой будет получаться по каналу «+/-40 В». Не очень хочется перекачивать всю мощность на самодельном трансформаторе, лучше задействовать существующие выходы основного трансформатора и добавить напряжение к тому, что уже есть на плате – в результате чего мощность дополнительного трансформатора снизится. Такое включение и изображено на схеме.

Итак, надо получить 40 В, 12 В уже есть, значит трансформатор должен добавлять 40-12=28 В. При таком подходе через дополнительный будет перекачиваться (28/40)*100=70% от выходной мощности. Это хорошо, можно снизить габаритную мощность трансформатора (выбрать его размером поменьше). Осмотр мусора выявил древний блок питания 200 Вт, из которого был извлечен силовой трансформатор. После прогрева и разборки его удалось разделить на сердечник и каркас.

450x276 22 KB

Для вычисления диаметра и количества витков обмоток необходимо знать сечение сердечника (диаметр 10 мм) и площадь окна намотки (4*20 мм).

Формула расчета числа витков от приложенного напряжения выглядит так: w = V / (0.4 * F * B * S).

  • w – искомое число витков.
  • V – напряжение, прикладываемое к обмотке. В формуле принимается прямоугольная форма сигнала с максимальной скважностью (то есть «меандр»).
  • F – частота в кГц.
  • B – индукция, Тл. Для импортных ферритов, рассчитанных на применение в блоках питания, B=0.1-0.2 для исполнения с накоплением энергии (дроссели) и B=0.2-0.4 без накопления (трансформаторы).
  • S – площадь сечения сердечника, см 2 .

В формуле использованы некоторые характеристики не в стандартных единицах, так проще считать, нет возни с порядками.

Сообщения

Денис Преображенский

Там спец тарифы. Раздача инета не получится никак, gsm модуль телематики не поддерживает такие функции, нет 3g, еще и оператор блокирует раздачу.

Dr. West

Вариант почитать литературу не рассматривается? Того же Шелестова, «Полезные схемы». Книга N5 в серии полностью посвящена таймеру и его применению.

Dr. West

В общем, всё как обычно: Тётенька, дайти водички попить, а то так кушать хочеться, что переночевать негде.

Dr. West

В книге «Бирюков С.А. Применение цифровых микросхем серий ТТЛ и КМОП» подробно рассматривается работа этого мультивибратора и особо отмечается, что схема на 2 инверторах может работать нестабильно и в некоторых случаях вообще не запускаться. Потому рекомендуется схема на 3 инверторах. У вас их в корпусе всё равно 4 штуки, чего им зря пропадать.

⇡#Входной выпрямитель

После фильтра переменный ток преобразуется в постоянный с помощью диодного моста – как правило, в виде сборки в общем корпусе. Отдельный радиатор для охлаждения моста всячески приветствуется. Мост, собранный из четырех дискретных диодов, – атрибут дешевых блоков питания. Можно также поинтересоваться, на какой ток рассчитан мост, чтобы определить, соответствует ли он мощности самого БП. Хотя по этому параметру, как правило, имеется хороший запас.

В цепи переменного тока с линейной нагрузкой (как, например, лампа накаливания или электроплитка) протекающий ток следует такой же синусоиде, как и напряжение. Но это не так в случае с устройствами, имеющими входной выпрямитель, – такими как импульсные БП. Блок питания пропускает ток короткими импульсами, примерно совпадающими по времени с пиками синусоиды напряжения (то есть максимальным мгновенным напряжением), когда подзаряжается сглаживающий конденсатор выпрямителя.

 Потребление тока импульсным БП

Потребление тока импульсным БП

Сигнал тока искаженной формы раскладывается на несколько гармонических колебаний в сумме с синусоидой данной амплитуды (идеальным сигналом, который имел бы место при линейной нагрузке).

Мощность, используемая для совершения полезной работы (которой, собственно, является нагрев компонентов ПК), указана в характеристиках БП и называется активной. Остальная мощность, порождаемая гармоническими колебаниями тока, называется реактивной. Она не производит полезной работы, но нагревает провода и создает нагрузку на трансформаторы и прочее силовое оборудование.

Векторная сумма реактивной и активной мощности называется полной мощностью (apparent power). А отношение активной мощности к полной называется коэффициентом мощности (power factor) – не путать с КПД!

У импульсного БП коэффициент мощности изначально довольно низкий – около 0,7. Для частного потребителя реактивная мощность не составляет проблемы (благо она не учитывается электросчетчиками), если только он не пользуется ИБП. На бесперебойник как раз таки ложится полная мощность нагрузки. В масштабе офиса или городской сети избыточная реактивная мощность, создаваемая импульсными БП уже значительно снижает качество электроснабжения и вызывает расходы, поэтому с ней активно борются.

 Электрическая схема и потребление тока блоком Active PFC

Электрическая схема и потребление тока блоком Active PFC

В частности, подавляющее большинство компьютерных БП оснащаются схемами активной коррекции фактора мощности (Active PFC). Блок с активным PFC легко опознать по единственному крупному конденсатору и дросселю, установленным после выпрямителя. В сущности, Active PFC является еще одним импульсным преобразователем, который поддерживает на конденсаторе постоянный заряд напряжением около 400 В. При этом ток из питающей сети потребляется короткими импульсами, ширина которых подобрана таким образом, чтобы сигнал аппроксимировался синусоидой – что и требуется для имитации линейной нагрузки. Для синхронизации сигнала потребления тока с синусоидой напряжения в контроллере PFC имеется специальная логика.

Схема активного PFC содержит один или два ключевых транзистора и мощный диод, которые размещаются на одном радиаторе с ключевыми транзисторами основного преобразователя БП. Как правило, ШИМ-контроллер ключа основного преобразователя и ключа Active PFC являются одной микросхемой (PWM/PFC Combo).

 Блок Active PFC и входной выпрямитель (Antec VP700P)

Блок Active PFC и входной выпрямитель (Antec VP700P)

Коэффициент мощности у импульсных блоков питания с активным PFC достигает 0,95 и выше. Кроме того, у них есть одно дополнительное преимущество – не требуется переключатель сети 110/230 В и соответствующий удвоитель напряжения внутри БП. Большинство схем PFC переваривают напряжения от 85 до 265 В. Кроме того, снижается чувствительность БП к кратковременным провалам напряжения.

Кстати, помимо активной коррекции PFC, существует и пассивная, которая подразумевает установку дросселя большой индуктивности последовательно с нагрузкой. Эффективность ее невелика, и в современном БП вы такое вряд ли найдете.

Описание схем блоков питания компьютера стандарта ATX

В качестве примеров рассматриваются несколько схем источников питания различной мощности. Схемы подобраны так, чтобы одинаковые функциональные узлы строились на различных элементах.

300-ваттный БП производства JNC computer

Схема блока питания компьютера — полное описание с примерами

В качестве первого примера приведена схема электрическая принципиальная БП SY-300ATX 300W. Входные цепи построены несколько упрощенно. В нем отсутствует конденсатор Cx для защиты от дифференциальных помех. Также нет варистора для защиты от выбросов сетевого напряжения. Полностью выполнена лишь схема защиты от синфазных помех – на дросселе LF1 и конденсаторах CY1 и CY2.

Выпрямитель на сборке RL205 особенностей не имеет, сглаживающий фильтр С1С2 одновременно выполняет функции делителя напряжения. Для выравнивания средней точки и быстрого разряда емкостей при выключении применены резисторы R13, R12 и варисторы V1, V2. От выпрямленного напряжения величиной около 310 вольт работает схема, формирующая дежурное напряжение.

Генератор выполнен на транзисторе Q3, первичные обмотки трансформатора T3 выполняют функцию нагрузки и обратной связи. Нижняя половина вторичной обмотки формирует собственно напряжение Stand By, которое выпрямляется диодом D7, сглаживается фильтром C13L2C14. Для его стабилизации организован еще один контур обратной связи через оптрон U1. Если выходной уровень повышается, свечение светодиода оптрона становится интенсивнее, приемный транзистор открывается, прикрывая транзистор Q4, который уменьшая напряжение на базе Q3, уменьшает время его открытого состояния. С двух обмоток (суммы верхней и нижней половин) снимается питание для микросхемы генератора и предварительного каскада инвертора. Оно выпрямляется диодом D8, сглаживается емкостью C12.

Средняя точка делителя выпрямленного высокого напряжения подключена к одному концу первичной обмотки импульсного трансформатора T3, защищенной от коммутационных выбросов снаббером R16C10. Другой конец первичной обмотки подключен к средней точке полумостового инвертора, образованного транзисторами Q1,Q2. Полумост изолирован от низковольтной части трансформатором T2. Импульсы на вторичных обмотках формируются драйвером на транзисторах Q5, Q6, которые, в свою очередь, попеременно открываются и закрываются под управлением выводов 7 и 8 микросхемы AT2005. Эта микросхема разработана для использования в качестве контроллера ШИМ в компьютерных блоках питания.

Как и любой PWM-контроллер она выполняет функции:

  • формирование импульсов управлениями транзисторами инвертора;
  • регулировка длительности импульсов в целях стабилизации выходных напряжений.

Кроме этого, она выполняет специфические для компьютерных БП задачи:

  • формирование сигнала Power_OK (PG);
  • запуск инвертора при получении сигнала Power_ON от материнской платы;
  • защита от превышения напряжений;
  • защита от снижения напряжений (при перегрузке).

Схема блока питания компьютера — полное описание с примерами

Назначение выводов микросхемы указано в таблице.

Тип Описание Номер Номер Описание Тип
Аналоговый вход Контроль канала +3,3 вольта 1 16 Прямой вход усилителя ошибки Аналоговый вход
Аналоговый вход Контроль канала +5 вольт 2 15 Инверсный вход усилителя ошибки Аналоговый вход
Аналоговый вход Контроль канала +12 вольт 3 14 Выход усилителя ошибки Аналоговый выход
Аналоговый вход Внешняя блокировка 4 13 VCC Питание
Питание GND 5 12 Внешняя блокировка сигнала PG Аналоговый вход
Подключение частотозадающего конденсатора 6 11 Сигнал PG Логический выход
Аналоговый выход Управление транзисторами драйвера 7 10 Конденсатор времени задержки сигнала PG
Аналоговый выход Управление транзисторами драйвера 8 9 Включение микросхемы при низком уровне, выключение при высоком Логический вход

В данном БП применяется микросхема AT2005. Ее не следует путать с широко распространенной AT2005B, имеющей иное расположение выводов. Полным аналогом AT2005 является микросхема LPG899.

Сигнал PG снимается с вывода 11, если напряжения на 1,2,3 выводах находятся в пределах нормы. С материнской платы сигнал Power_ON приходит на вывод 9 — если уровень становится низким, генерация запускается. При таком построении управление контроллером ШИМ не требует дополнительных элементов.

На выход 12 подается напряжение от средней точки драйвера – при исчезновении импульсов микросхема выключается. На вход 16 подается напряжение канала +12 вольт – так сформирована цепь обратной связи для регулирования напряжения. При повышении напряжения на выходе канала, длительность импульсов уменьшается, при снижении – увеличивается. Остальные каналы стабилизируются с помощью дросселя групповой стабилизации – он на схеме своего буквенного обозначения не имеет.

Схема блока питания компьютера — полное описание с примерами

Он представляет собой дроссель с 5 обмотками, намотанными на одном тороидальном сердечнике. Каждая обмотка включается в цепь своего напряжения. Если изменяется напряжение любого канала, это приводит к соответствующему изменению в остальных каналах, включая +12 вольт. Изменение этого напряжения задействует ШИМ-регулятор и все остальные напряжения возвращаются в установленные пределы.

Схема блока питания компьютера — полное описание с примерами

Импульсный трансформатор выполнен с одной вторичной обмоткой с выведенной средней точкой и двумя симметричными отводами, с которых снимается напряжение для каналов +5 и -5 вольт. С крайних выводов снимается напряжение для канала +12 VDC и -12 VDC. Все напряжения выпрямляются двухтактными мостовыми выпрямителями и сглаживаются фильтрами, в которые входит соответствующая обмотка дросселя групповой стабилизации, индивидуальные для каждого канала дроссели L6..L9 и конденсаторы. От канала +12 VDC питается вентилятор охлаждения – стабилизатор собран на транзисторе Q6 и стабилитроне ZD2.

Канал +3,3 VDC выполнен от отдельного выпрямителя на сборке D17 и диодах D14, D15. В схему группового регулирования этот канал не включен.

ATX 350 WP4

Схема блока питания компьютера — полное описание с примерами

Следующий источник питания имеет мощность 350 W. Он построен по похожей схеме, в которой содержится ряд отличий от предыдущего БП:

  • входные цепи содержат два конденсатора защиты от синфазных помех (Cx, Cx2) и терморезистор для ограничения тока заряда конденсаторов;
  • в выходном каскаде инвертора применены намного более мощные транзисторы (с током коллектора 12 А против 3 А у предыдущего узла);
  • генератор дежурного напряжения выполнен на MOSFET.

Более глубокая разница состоит в применении микросхемы для ШИМ и в формировании сигнала PG и обработке команды PS_ON. Для управления широтно-импульсной модуляцией применена микросхема AZ7500BP – полный аналог популярнейшей TL494.

Схема блока питания компьютера — полное описание с примерами

Эта микросхема более универсальна, содержит два усилителя ошибки, что позволяет организовать стабилизацию не только по напряжению, но и по току. TL494 позволяет более гибко управлять ШИМ (за счет настройки времени Dead Time – паузы между импульсами). Но она не содержит супервайзера по наличию и уровню выходных напряжений, и эту задачу надо решать отдельно. В данной схеме для этого применена микросхема LP7510. При наличии трех напряжений — +12 VDC, +5 VDC, +3,3 VDC на выводе 8 появится сигнал PG, который сообщит компьютеру об исправности БП. При получении от материнской платы на выводе 4 сигнала низкого уровня Power_ON, на выводе 3 появится высокий уровень, разрешающий запуск микросхемы TL494 и запуск БП.

Sparkman 400 W

Схема блока питания компьютера — полное описание с примерами

Следующий блок питания – Sparkman 400 W. Его основная особенность – однотактный прямоходовый преобразователь. В качестве силового транзистора применен MOSFET SVD7N60F с током стока до 7 А, который напрямую управляется микросхемой KA3842. На ее вывод 1 через оптрон U38 заведена обратная связь, посредством которой регулируется выходной уровень путем изменения длительности импульсов.

Также применен дроссель групповой стабилизации. Для напряжения +3,3 VDC отдельной обмотки и выпрямителя не предусмотрено, оно формируется от канала +5 вольт с помощью отдельного стабилизатора на MOSFET SD1. Супервайзером напряжений, формирователем сигнала PG служит микросхема WT7510 в стандартном включении.

Схема формирования +5 V Stand By и другие узлы особенностей не имеют. Фильтр высоковольтного выпрямителя выполнен в виде делителя со средней точкой, которая в данном случае нужна для переключения сетевого напряжения с 220 VAC на 110 VAC. Во втором случае выпрямитель из мостового становится удвоителем сетевого напряжения.

Отзывы о сервисе

Мануалы Справочник Программы Радиосамоделки Медтехника Библиотека Схема блока питания для компьютера Здесь вы можете скачать довольно приличный сборник принципиальных схем компьютерных блоков питания АТХ и уже устаревших источников АТ, узнаете как проверить компьютерный источник, получите дельные советы по его ремонту и возможные варианты модернизации в нужные радиолюбительские конструкции. Сергеев Б. Фильтр состоит из группы конденсаторов и дросселя. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций.

В этих БП используют специальный дроссель с индуктивностью выше чем на входе. С задержкой в 0,

Конструктивные особенности Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. Чаще всего при поломке компьютерного блока питания, в системнике отсутствуют признаки жизни, не горит светодиодная индикация, нет звуковых сигналов, не крутятся вентиляторы.

Но если осуществлять оперативное управление этими параметрами, например с помощью контроллера с функцией стабилизатора, то показанная выше структурная схема будет вполне пригодной для использования в компьютерной техники.

Нагрузка источника питания — схема терморегулирования. Сергеев Б.

Транзисторы Q 1 и Q 2 открываются противофазно на равные временные интервалы t1 и t2 рис. В источниках питания для конструктива АТХ в дальнейшем — источник изменен разъем для подключения питания к системной плате.

При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор методика такая же, как при проверке диодов. Структурная схема блока питания компьютера Схема блока питания компьютера кликните для увеличения.
Блок питания АТХ пособие по ремонту часть1

Как паять

Для сборки используется печатная плата из фольгированного диэлектрика. Сначала рисуется схема, затем на заготовку платы наносится рисунок и производится протравка. После этого засверливаются отверстия для крепления каждого элемента схемы блока.

Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:

В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector