Что такое компьютерный монитор

Дисплей

Дисплей (анг. display — показывать) относится к основным устройствам любого ПК, без которого невозможна эффективная работа. Наиболее важная отличительная особенность современных компьютеров заключается в возможности почти мгновенного взаимодействия (работа в режиме реального времени) между системой и пользователем. В большинстве систем это взаимодействие осуществляется при помощи клавиатуры (и/или манипуляторов) и экрана дисплея. В процессе работы на экране дисплея отображаются как вводимые пользователем команды и данные, так и реакция системы на них.

Назначение. Устройство визуального отображения информации или, более точно, устройство отображения информации, находящейся в оперативной памяти, позволяющее обеспечить взаимодействие пользователя с аппаратным и программным обеспечением компьютера. Дисплей — это важнейший компонент пользовательского интерфейса.

Дисплей — это общее название устройства, показывающего, отображающего информацию. Под управлением ЭВМ в качестве дисплея может работать даже бытовой телевизор. Казалось бы, проблема решена — есть устройство, позволяющее быстро отображать состояние системы. Однако оказалось, что при продолжительной работе с ним пользователь быстро устаёт: это устройство существенно влияет на работоспособность, эмоциональный настрой, самочувствие и способно даже привести к потере зрения. Возникла необходимость оптимизировать характеристики экрана, добиться более чёткого и устойчивого изображения, чтобы избежать излишней утомляемости. Были разработаны специализированные устройства — мониторы, контролирующие процесс отображения (англ. monitor — староста в классе, наблюдающий за порядком; корректирующее или управляющее устройство).

Клавиатуру и монитор можно связать с компьютером как отдельные устройства или соединить их в терминал, связанный с компьютером как единое целое. Обычно терминалы используются в системах коллективного пользования, когда с одним и тем же центральным компьютером одновременно работают много пользователей. Это называется работой в режиме удаленного доступа.

Принцип работы. Так как информация бывает разной, то используются разнообразные устройства отображения информации. Краткая классификация дисплеев приведена на рисунке.

Отличие алфавитно-цифровых (иногда говорят «знакоместных») и графических дисплеев состоит в том, что:

первые способны воспроизводить только ограниченный набор символов, причём символы могут выводиться только в определенные позиции экрана (чаще всего на экран можно вывести 24 или 25 строк по 40 или 80 символов в строке);

вторые отображают как графическую, так и текстовую информацию, при этом экран разбит на множество точек (пикселей), каждая из которых может иметь тот или иной цвет. Из этих светящихся точек и формируется изображение.

Монохромные устройства способны воспроизводить информацию только в каком-либо одном цвете, возможно, с различными оттенками (градациями яркости). Встречаются чёрно-белые экраны, а также зелено-желтые. Многие специалисты признают, что для длительной работы за компьютером лучше использовать монохромный дисплей: глаза при этом устают намного меньше.

Цветные дисплеи обеспечивают отображение информации в нескольких оттенках цвета (от 16 оттенков до более чем 16 млн). Фактически, современные дисплеи могут отображать столько оттенков, сколько позволяет видеокарта, память которой хранит информацию о цветах точек экрана.

Как образуются цвета на экране современного дисплея?

Изображение состоит из отдельных зёрен экрана. Каждое зерно экрана состоит из трех пятнышек люминофора, одно из которых может светиться красным цветом (англ. Red), второе — зелёным (англ. Green), третье — синим (англ. Blue); каждое из этих пятнышек может и не светиться (быть темным). Комбинация красного и зелёного цветов дает жёлтый цвет, синего и зелёного — голубой, синего и красного — пурпурный, комбинация всех трёх цветов одной яркости дает белый цвет, отсутствие всех цветов дает чёрный цвет. Любой оттенок, различимый человеческим глазом, можно получить, «смешивая» эти три цвета в той или иной пропорции. Как такового смешения цветов не происходит — физически каждое пятнышко располагается на определенном месте. Особенность зрения человека состоит в том, что на некотором расстоянии от экрана он воспринимает близко расположенные цветовые точки различной яркости как единый элемент — пиксель. Цвет пикселя является результатом смешения в восприятии основных составляющих его цветов. Такая модель цветообразования называется RGB-моделью.

Наиболее распространены дисплеи на электронно-лучевой трубке (ЭЛТ). Большинство персональных компьютеров оснащено в основном ЭЛТ-дисплеями. Они работают подобно бытовому телевизору.

Под воздействием электрических полей в «электронной пушке» разгоняется поток электронов. Далее при помощи электромагнитных полей пучок отклоняется в нужную сторону. Затем, проходя через апертурную решётку, этот поток фокусируется, доходит до экрана и заставляет светиться маленькое пятнышко люминофора (зерно экрана) с яркостью, пропорциональной интенсивности пучка. Так работают монохромные устройства. В цветных мониторах зерно экрана составляют три пятнышка люминофора разного цвета (красного, зелёного и синего) и потоки электронов посылаются тремя «пушками», причём электронный луч для каждого цвета должен попадать на свой люминофор.

Преимущества: современные ЭЛТ-дисплеи имеют высокое качество изображения, достаточно дёшевы и надёжны.

Недостатки: такие дисплеи достаточно громоздки, потребляют много энергии, имеют более высокий уровень излучения, чем дисплеи других типов.

Жидкокристаллические дисплеи (Liquid-Crystal Display), или LCD-дисплеи. Их действие основано на эффекте потери жидкими кристаллами своей прозрачности при пропускании через них электрического тока. Применяются преимущественно в портативных компьютерах (notebook).

Преимущества: жидкокристаллические дисплеи не создают вредного для здоровья пользователя излучения, наиболее экономичны в потреблении энергии, обеспечивают хорошее качество изображения.

Недостатки: такие дисплеи достаточно дороги, небольшие (14″) размеры экрана; если смотреть на экран сбоку, то почти ничего нельзя разглядеть.

Газо-плазменные дисплеи (plasma displays). Действие основано на свечении газа при пропускании через него электрического тока. Схема такова: имеются два листа, между ними инертный газ; один из листов прозрачный, а на втором расположены электроды, на которые подаётся напряжение. Обычно газо-плазменные индикаторы состоят из нескольких подобных элементарных ячеек, число точек в каждой из которых подобрано наиболее оптимальным образом для отображения одиночных символов. (Выглядит это примерно так же, как часы в метро.) Эти дисплеи применяются в основном в специализированных ЭВМ для отображения строк символов.

Светодиодные матрицы (LED-дисплеи). Обычно применяются во встроенных ЭВМ (используемых в автоматизированных линиях на промышленном производстве, в робототехнике и так далее) для отображения небольших объёмов текстовой информации.

Перспективная разработка — панели на основе светящихся пластмасс (LEP-панели). Чем хороши LEP-элементы? Во-первых, они светятся сами, что снижает энергопотребление. Кусочки пластика, излучающего красный, синий, зелёный свет, наносятся на гибкую пластиковую основу точно так же, как люминофор на поверхность кинескопа, к ним подводятся проводники — экран готов. Во-вторых, такие панели имеют небольшой вес при больших размерах. Например, гибкий пластиковый экран размером 1 м2 может весить несколько десятков грамм. В-третьих, LEP-элементы надёжны.

На протяжении многих лет механизмы (способы) связи между компьютером и дисплеем непрерывно видоизменялись, всё более совершенствуясь. Для подключения дисплея к компьютеру необходима соответствующая карта — видеоадаптер.

Основные пользовательские характеристики:

Размер экрана по диагонали. Измеряется в дюймах. Имеются 14″, 15″, 17″, 21″ и др. мониторы.Следует помнить, что размер изображения, как правило, на дюйм меньше размера кинескопа. Считается, что 15″ монитор отлично подходит для работы в домашних условиях; 17″ монитор необходим для профессиональной работы с графикой; размеры экрана, большие 21″ для персонального монитора на сегодняшний день не очень удобны для пользования, так как экран тяжело окинуть взглядом.

Размер зерна экрана — расстояние в миллиметрах между двумя соседними люминофорами одного цвета. Меньший размер зерна соответствует более резкой и контрастной картинке, создавая общее впечатление чистоты цвета и чёткого контура изображения. У мониторов разного типа размер зерна экрана может находиться в пределах от 0,18 до 0,50 мм. Наиболее оптимальными для восприятия считаются мониторы с зерном экрана от 0,24 до 0,28 мм.

Разрешающая способность — число пикселей (точек экрана) по горизонтали и вертикали. Эта характеристика определяет контрастность изображения. Она зависит от размера экрана и размера зерна экрана, но может изменяться (в определённых пределах) с помощью программной настройки.

В таблице приведены некоторые оптимальные с точки зрения эргономики разрешающие способности при различных размерах кинескопа и зерна экрана.

LCD мониторы

В общих чертах конструкция жидкокристаллической панели выглядит следующим образом. Это слоеный пирог из двух стекол (или гибких прозрачных полимеров) по совместительству выполняющих роль электродов и слоя жидких кристаллов между ними, а по краям пирога расположены два линейных поляризационных фильтра с взаимно перпендикулярной ориентацией.

matrica lcd

Свет от неполяризованного источника света проходит через первый поляризационный фильтр и становится поляризованным по горизонтали, дальше он попадает в слой жидких кристаллов. Кристаллы при этом расположены относительно друг друга и поляризационных фильтров строго определенным образом, они закручены в спираль. Таким образом свет пройдя через них меняет угол на 90 градусов и беспрепятственно выходит через верхний поляризационный фильтр расположенный с другой стороны панели и ориентированный вертикально. В итоге мы видим свет или по-другому точка светится.

Однако, если на электроды подать напряжение, то под действием электрического поля жидкие кристаллы начинают менять свою ориентацию в пространстве раскручивая спираль и свет уже не может пройти через второй поляризационный фильтр и получается черный цвет. Если дополнить эту систему цветными фильтрами, то получится цветной монитор. В дисплеях без подсветки принцип тот же, но используется отраженный свет от внешних источников.

У ЖК мониторов есть несколько важных характеристик. Одной из основных является физический размер экрана, который принято измерять в длине диагонали и обозначать в дюймах. Однако одной диагонали недостаточно, чтобы понять размеры дисплея и поэтому используется еще такой параметр как соотношение сторон.

Наиболее распространенными являются 4:3, 5:4, 16:9, 16:10. Соотношение показывает, насколько ширина экрана отличается от высоты. Соотношения сторон 4:3 означает, что ширина составляет 4 условных единицы, а высота только 3 или по-другому ширина в 1,33 раза больше высоты. Если за условную единицу взять 10 сантиметров, то получится ширина равна 40 см, а высота 30 см. Первые два соотношения относятся к так называемым прямоугольным, а вторые два к широкоформатным мониторам.

Изначально мониторы выпускались, как и старые телевизоры в пропорциях близких к квадрату, что довольно удобно для повседневной работы за компьютером. Однако с развитием технологий и появления HD видео производители решили, что для большего погружения в атмосферу фильма или игры экран следует делать более вытянутым в ширину, что якобы задействует периферийное зрение. Со временем пошли еще дальше и появились сверхширокоформатные мониторы с соотношением сторон 21:9.

Другой характеристикой, тесно связанной с диагональю, является разрешение монитора, выражаемое в количестве ячеек (пикселей) содержащихся в матрице по ширине и высоте. Например, 1280×768, 1366×768, 1280×1024, 1920×1080, 2460×1440 и так далее. Чем их больше, тем четче и детальней будет изображение. Поскольку размер пиксела должен быть достаточно маленьким, чтобы оставаться неразличим для человеческого глаза, то увеличение диагонали автоматически требует увеличения разрешения матрицы. Узнать разрешение своего монитора онлайн вы можете здесь.

Таким образом каждый монитор имеет физическое разрешение так же называемое наитивным. Это важный момент так, как только в этом разрешении изображение получается наиболее четким. Если изменить разрешение в меньшую сторону программным способом, например, 1920×1080 превратить в 1366×768 то качество картинки заметно ухудшится. Это происходит из-за того, что теперь точку, которая раньше показывалась одним пикселем теперь надо показывать дробным числом пикселей, и чтобы этого избежать применяются различные алгоритмы, но они ухудшают качество изображения.

Конечно мониторы имеют еще множество других характеристик, влияющих на их потребительские свойства, но их мы рассмотрим отдельно в другой раз. Компьютерные мониторы и экраны ноутбуков можно выключать программным способом по собственному желанию, не используя кнопку питания на корпусе.

Чем дисплей отличается от экрана, монитора и тачскрина?

Монитор компьютера

Термин «экран» специалисты используют редко, поскольку так можно назвать несколько абсолютно разных элементов – матрицу, тачскрин, иногда даже корпус. С помощью дисплея информация визуализируется, а экраном считается поверхность, на которую необходимые данные проецируются.

Тачскрин

Тачскрин – слово, образованное от английского «touchscreen», что означает «сенсорный экран» (панель). Представляет из себя многослойную пленку, которая используется для ввода информации (управление, набор символов, другое). Дисплей же только отображает данные.

Дисплей устройства

Монитор – это устройство, которое соединяется с ПК для визуализации информации, в него могут входить все вышеупомянутые компоненты. Дисплей является частью комплекса механизмов, составляющих монитор (как динамик и аудиоколонка, например).

Что такое экран — дисплей

Экран (дисплей) — это устройство вывода информации в графическом виде, которая передается на него в электронном формате без постоянной записи. Их устанавливают на: мониторы, телевизоры, смартфоны, планшеты, часы и многие другие устройства. Также существуют и тактильные — сенсорные модели.

Под это определение подходят и экраны, на которые проецируется изображение, например, с помощью проектора. Т.к. разумно его считать визуальным дисплеем, поскольку он является устройством отображения и вывода информации, которая передается на него в электронном виде.

Также экраном называют в информатике область на которой отображается информация, но и дисплеем ее тоже часто называют. Так что можно смело использовать эти термины, как синонимы. На английском — это и есть синонимы, т.к. определения довольно расплывчаты. Используя их просто исходите из контекста, так будет правильнее и логичнее всего.

Чем отличаются дисплей, экран, монитор и тачскрин

Электронный дисплей

Дисплей — это устройство, которое служит для отображения визуальной информации.

Для различия понятий под дисплеем подразумевают часть полноценной системы, без которой самостоятельный дисплей можно представить деталью. То есть, например, у телефона под стеклом находится как раз дисплей, а не монитор (подробнее о нём ниже). Аналогично, дисплеями снабжены калькуляторы, электронные часы, мобильные гаджеты, сложные электронные станки и так далее.

Определяя, чем дисплей отличается от монитора , подчеркнём: для работы дисплея требуются дополнительные узлы по обеспечению его питанием, по приёму и преобразованию информации и так далее. При этом, дисплей, в отличии от экрана, — это конкретное электронное устройство.

Экран — область отображения визуальной информации.

Слово экран имеет несколько значений (омонимов), нас интересует именно техническое понятие. Определение экран шире вышеприведённого определения
Для лёгкости восприятия можно привести простой пример: когда мы ходим в кинотеатр, то фильм смотрим на экране. То есть, сама область, где транслируется видеоряд, не является технически-сложным устройством (как дисплей), но именно она называется экраном.

Отсюда делаем вывод: разница между экраном и монитором заключается в том, что экран — это вся область поверхности устройства, на которое тем или иным способом выводится визуальная информация, но в понятие экрана не входят остальные комплектующие, обеспечивающие работу дисплея.

Дисплей, тачскрин и экран монитора

Монитор — это электронное устройство, предназначенное для отображения визуальной информации, получаемой посредством видеосигнала.

Чтобы было понятно, сразу обозначим: монитор по глубине понятия шире, чем дисплей. В полном смысле, монитор состоит из дисплея, блока питания, инвертора подсветки, плат с микрочипами преобразования сигнала и других составляющих.
Грубо говоря, монитор можно без особых усилий и знаний отключить от одного устройства, например компьютера, и подключить к другому. В быту ярким примером использования монитора служат компьютеры.

Есть смысл выделить устройства, которые не имеют монитора: моноблочный компьютер, сотовый телефон, планшет и подобные. Все эти гаджеты снабжены дисплеями, но в теории к каждому из таких устройств монитор может быть подключен внешним соединением при наличии подходящих интерфейсов и поддержки программной части.

То есть отличия монитора от дисплея состоят в том, что монитор — это целостное оборудование, самостоятельное устройство, а дисплей — только составная часть его. В то же время, каждый монитор снабжён дисплеем, но кроме мониторов дисплеи используются в конструкции и других сложных электронных агрегатов.

Прозрачные сенсорные панели, тачскрин

Тачскрин (TouchScreen, сенсорный экран) — это устройство, служащее для ввода информации посредством прикосновений к его поверхности или прочих механических воздействий (надавливания, электрического импульса).

Отличие тачскрина от дисплея и монитора в том, что тачскрин не способен выводить визуальную информацию, так как является средством её ввода, а не вывода.
Тачскрин можно представить как прозрачное стекло, с подключенными к нему сенсорами и шлейфами для соединения с оборудованием обработки информации, будь то телефон, ноутбук, часы или что-то ещё.

По типу экрана:

  • ЭЛТ — монитор на основе электронно-лучевой трубки (англ. cathode ray tube, CRT)
  • ЖК — жидкокристаллические мониторы (англ. liquid crystal display, LCD)
  • Плазменный — на основе плазменной панели (англ. plasma display panel, PDP, gas-plazma display panel)
  • Проектор — видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант — через зеркало или систему зеркал); и проекционный телевизор
  • LED-монитор — на технологии LED (англ. light-emitting diode — светоизлучающий диод)
  • OLED-монитор — на технологии OLED (англ. organic light-emitting diode — органический светоизлучающий диод)
  • Виртуальный ретинальный монитор — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза
  • Лазерный — на основе лазерной панели (пока только внедряется в производство).
  • двумерный (2D) — одно изображение для обоих глаз,
  • трёхмерный (3D) — для каждого глаза формируется отдельное изображение для получения эффекта объёма.

Электронная бумага

Электронная бумага (англ. e-paper, electronic paper; также электронные чернила, англ. e-ink) — технология отображения информации, разработанная для имитации обычной печати на бумаге и основанная на явлении электрофореза.

В отличие от традиционных плоских жидкокристаллических дисплеев, в которых используется просвет матрицы для формирования изображения, электронная бумага формирует изображение в отражённом свете, как обычная бумага, и может хранить изображение текста и графики в течение достаточно длительного времени, не потребляя при этом электрической энергии и затрачивая её только на изменение изображения. В отличие от традиционной бумаги, технология позволяет произвольно изменять записанное изображение.

Первая электронная бумага, названная Гирикон (англ. Gyricon), состояла из полиэтиленовых сфер от 20 до 100 мкм в диаметре. Каждая сфера состояла из отрицательно заряженной чёрной и положительно заряженной белой половины. Все сферы помещались в прозрачный силиконовый лист, который заполнялся маслом, чтобы сферы свободно вращались. Полярность подаваемого напряжения на каждую пару электродов определяла, какой стороной повернется сфера, давая, таким образом, белый или чёрный цвет точки на дисплее.

В 1990-х годах Джозеф Якобсон изобрел другой тип электронной бумаги.

Принцип действия был следующий: в микрокапсулы, заполненные окрашенным маслом, помещались электрически заряженные белые частички. В ранних версиях низлежащая проводка управляла тем, будут ли белые частички вверху капсулы (чтобы она была белой для того, кто смотрит) или внизу (смотрящий увидит цвет масла).[6] Это было фактически повторное использование уже хорошо знакомой электрофоретической (от электро- и греч. φορέω — переносить) технологии отображения, но использование капсул позволило сделать дисплей с использованием гибких пластиковых листов вместо стекла.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector