Базовые логические элементы компьютера

Базовые логические элементы компьютера

Базовые логические элементы «И», «ИЛИ», «НЕ».

Алгебра логики – это математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания.

Создателем алгебры логики является английский математик Джордж Буль (19 век), в честь которого она названа булевой алгеброй высказываний.

Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Например, предложение «6 – четное число» — высказывание, так как оно истинное.
Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера, поскольку основной системой счисления в компьютере является двоичная, в которой используются цифры 1 и 0, а значений логических переменных тоже два: 1 и 0.

Логический элемент компьютера — это часть электронной логической схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и др. (называемые также вентилями), а также триггер.
С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера.
Работу логических элементов описывают с помощью таблиц истинности.

Базовые логические элементы И, ИЛИ, НЕ

Схема И реализует конъюнкцию (логическое умножение) двух или более логических значений.


Комбинированные элементы

На практике часто используются комбинированные элементы И-НЕ и ИЛИ-НЕ. С помощью логических элементов И-НЕ можно реализовать любую из базовых логических операций, а значит и построить любую логическую схему. То же самое можно сделать и с применением элемента ИЛИ-НЕ.

Условное обозначение принятое в России (ГОСТ) и Европе (IEC) Условное обозначение принятое в Америке (ANSI)

Элемент И-НЕ последовательно реализует операцию логического умножения, а затем инверсию полученного результата. С помощью базовых элементов И-НЕ можно представить следующим образом:

Принцип работы логического элемента И-НЕ:

Базовые логические элементы, построенные на основе элементов И-НЕ:

Логический элемент НЕ из элемента И-НЕ

Логический элемент И из элементов И-НЕ

Логический элемент ИЛИ из элементов И-НЕ

Что такое логический элемент компьютера?

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и другие (называемые также вентилями), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Чтобы представить два логических состояния — “1” и “0” в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению “истина” (“1”), а низкий — значению “ложь” (“0”).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Что такое схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ?

С х е м а И

Схема И реализует конъюнкцию двух или более логических значений.

Условное обозначение на структурных схемах схемы И с двумя входами представлено на рис. 5.1. Таблица истинности — в таблице 5.1.

x y xЧy

Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет ноль, на выходе также будет ноль.

Связь между выходом z этой схемы и входами x и y описывается соотношением: z = xЧy (читается как «x и y»).

Операция конъюнкции на функциональных схемах обозначается знаком “&” (читается как «амперсэнд»), являющимся сокращенной записью английского слова and.

С х е м а ИЛИ

Схема ИЛИ реализует дизъюнкцию двух или более логических значений.

Когда хотя бы на одном входе схемы ИЛИ будет единица, на её выходе также будет единица.

Условное обозначение схемы ИЛИ представлено на рис. 5.2. Знак “1” на схеме — от устаревшего обозначения дизъюнкции как «>=1» (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом z этой схемы и входами x и y описывается соотношением: z = x v y (читается как «x или y«). Таблица истинности — в табл. 5.2.

x y x v y

С х е м а НЕ

Схема НЕ (инвертор) реализует операцию отрицания. Связь между входом x этой схемы и выходом z можно записать соотношением z =, где читается как «не x» или «инверсия х«.

Если на входе схемы 0, то на выходе 1. Когда на входе 1, на выходе 0. Условное обозначение инвертора — на рисунке 5.3, а таблица истинности — в табл. 5.3.

С х е м а И — НЕ

Схема И-НЕ состоит из элемента И и инвертора и осуществляет отрицание результата схемы И.

Связь между выходом z и входами x и y схемы записывают следующим образом:, где читается как «инверсия x и y«.

Условное обозначение схемы И-НЕ представлено на рисунке 5.4. Таблица истинности схемы И-НЕ — в табл. 5.4.

С х е м а ИЛИ — НЕ

Схема ИЛИ-НЕ состоит из элемента ИЛИ и инвертора и осуществляет отрицание результата схемы ИЛИ.

Связь между выходом z и входами x и y схемы записывают следующим образом:, где, читается как «инверсия x или y«. Условное обозначение схемы ИЛИ-НЕ представлено на рис. 5.5.

Таблица истинности схемы ИЛИ-НЕ — в табл. 5.5.

Что такое триггер?

Триггер — это электронная схема, широко применяемая в регистрах компьютера для надёжного запоминания одного разряда двоичного кода. Триггер имеет два устойчивых состояния, одно из которых соответствует двоичной единице, а другое — двоичному нулю.

Термин триггер происходит от английского слова trigger — защёлка, спусковой крючок. Для обозначения этой схемы в английском языке чаще употребляется термин flip-flop, что в переводе означает “хлопанье”. Это звукоподражательное название электронной схемы указывает на её способность почти мгновенно переходить (“перебрасываться”) из одного электрического состояния в другое и наоборот.

Самый распространённый тип триггера — так называемый RS-триггер (S и R, соответственно, от английских set — установка, и reset — сброс). Условное обозначение триггера — на рис. 5.6.

Он имеет два симметричных входа S и R и два симметричных выхода Q и, причем выходной сигнал Q является логическим отрицанием сигнала.

На каждый из двух входов S и R могут подаваться входные сигналы в виде кратковременных импульсов ().

Наличие импульса на входе будем считать единицей, а его отсутствие — нулем.

На рис. 5.7 показана реализация триггера с помощью вентилей ИЛИ-НЕ и соответствующая таблица истинности.

S R Q
запрещено
хранение бита

Проанализируем возможные комбинации значений входов R и S триггера, используя его схему и таблицу истинности схемы ИЛИ-НЕ (табл. 5.5).

1. Если на входы триггера подать S=“1”, R=“0”, то (независимо от состояния) на выходе Q верхнего вентиля появится “0”. После этого на входах нижнего вентиля окажется R=“0”, Q=“0” и выход станет равным “1”.

2. Точно так же при подаче “0” на вход S и “1” на вход R на выходе появится “0”, а на Q — “1”.

3. Если на входы R и S подана логическая “1”, то состояние Q и не меняется.

4. Подача на оба входа R и S логического “0” может привести к неоднозначному результату, поэтому эта комбинация входных сигналов запрещена.

Поскольку один триггер может запомнить только один разряд двоичного кода, то для запоминания байта нужно 8 триггеров, для запоминания килобайта, соответственно, 8 • 2 10 = 8192 триггеров. Современные микросхемы памяти содержат миллионы триггеров.

Что такое сумматор?

Сумматор — это электронная логическая схема, выполняющая суммирование двоичных чисел.

Сумматор служит, прежде всего, центральным узлом арифметико-логического устройства компьютера, однако он находит применение также и в других устройствах машины.

Многоразрядный двоичный сумматор, предназначенный для сложения многоразрядных двоичных чисел, представляет собой комбинацию одноразрядных сумматоров, с рассмотрения которых мы и начнём. Условное обозначение одноразрядного сумматора на рис. 5.8.

При сложении чисел A и B в одном i-ом разряде приходится иметь дело с тремя цифрами:

1. цифра ai первого слагаемого;

2. цифра bi второго слагаемого;

3. перенос pi–1 из младшего разряда.

В результате сложения получаются две цифры:

1. цифра ci для суммы;

2. перенос pi из данного разряда в старший.

Таким образом, одноразрядный двоичный сумматор есть устройство с тремя входами и двумя выходами, работа которого может быть описана следующей таблицей истинности:

Входы Выходы
Первое слагаемое Второе слагаемое Перенос Сумма Перенос

Если требуется складывать двоичные слова длиной два и более бит, то можно использовать последовательное соединение таких сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого.

Например, схема вычисления суммы C = (с3 c2 c1 c0) двух двоичных трехразрядных чисел A = (a2 a1 a0) и B = (b2 b1 b0) может иметь вид:

Прокрутить вверх

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право.

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между.

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот.

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры.

Логические элементы

С помощью логических элементов в компьютере реализуются логические функции, которые были рассмотрены ранее.

11 (2).png

На выходе конъюнктора будет единица только в том случае, когда на входе будут две единицы, в остальных случаях будет (0).

2 (2).png

В результате работы дизъюнктора может получиться (0) тогда и только тогда, когда на входе два нуля.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector