Классическая архитектура ПК. Основные особенности архитектуры современных ПК
Несмотря на то что современные модели компьютеров представлены на рынке широким спектром брендов, собраны они в рамках небольшого количества архитектур. С чем это связано? Какова специфика архитектуры современных ПК? Какие программные и аппаратные компоненты ее формируют?
Что такое архитектура ПК? Под этим довольно широким термином принято понимать совокупность логических принципов сборки компьютерной системы, а также отличительные особенности технологических решений, внедряемых в нее. Архитектура ПК может быть инструментом стандартизации. То есть компьютеры в рамках нее могут собираться согласно установленным схемам и технологическим подходам. Объединение тех или иных концепций в единую архитектуру облегчает продвижение модели ПК на рынке, позволяет создавать программы, разработанные разными брендами, но гарантированно подходящие для нее. Единая архитектура ПК также позволяет производителям компьютерной техники активно взаимодействовать на предмет совершенствования тех или иных технологических компонентов ПК.
Под рассматриваемым термином может пониматься совокупность подходов к сборке компьютеров или отдельных его компонентов, принятых на уровне конкретного бренда. В этом смысле архитектура, которая разработана производителем, является его интеллектуальной собственностью и используется только им, может выступать конкурентным инструментом на рынке. Но даже в таком случае решения от разных брендов иногда могут быть классифицированы в рамках общей концепции, объединяющей в себе ключевые критерии, которые характеризуют компьютеры различных моделей.
Термин «архитектура ПК» информатика как отрасль знаний может понимать по-разному. Первый вариант трактовки предполагает интерпретацию рассматриваемого понятия как стандартизирующего критерия. В соответствии с другой интерпретацией архитектура — это, скорее, категория, позволяющая одному бренду-производителю стать конкурентным в отношении других.
Интереснейший аспект — то, как соотносятся история и архитектура ПК. В частности, это появление классической логической схемы конструирования компьютеров. Рассмотрим ее особенности.
Понятие архитектуры компьютера
Архитектура компьютера — это ряд неких правил производства электронной системы вычисления, а также базовые способности и отличительные черты ее технологий.
Архитектурой персонального компьютера обычно пользуются в качестве инструмента для отработки стандартов. Другими словами, компьютерную систему по такому стандарту реально воплотить на основе сформированных схематических решений и технологий.
Под термином «архитектура компьютера» также понимают методологию сборки компьютеров и их составляющих. Таким образом, архитектура, разработанная определённой компанией, является её интеллектуальной собственностью и может быть применена только ею, являясь инструментом её конкурентоспособности. Но, невзирая на это, различными брендами используется общая концепция, объединяющая основные базовые характеристики разных моделей компьютеров, что делает их комплектующие универсальными.
Применение единой архитектуры персональных компьютеров дает возможность фирмам по производству компьютеров тесно взаимодействовать друг с другом для создания и совершенствования различных компонентов и используемых технологий. Совмещение разных концепций в одно архитектурное решение дает возможность распространяться определенным моделям персональных компьютеров на рынке, позволяет различным компаниям спроектировать пакеты программ, которые в любом случае подойдут для персонального компьютера.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Булева алгебра
Этот вид алгебры работает с 0 и 1, здесь присутствуют такие операции (табл. 1.0) как: И (конъюнкция), ИЛИ (дизъюнкция), НЕ (отрицание), ИСКЛЮЧАЮЩЕЕ ИЛИ и их комбинации и т.д. Чтобы описать логические функции можно использовать разные способы, но мы сконцентрируемся только на двух: таблица истинности и дизъюнктивно нормальная форма.
Для построения таблицы истинности мы просто перебираем все комбинации значений всех переменных. Таблица позволяет увидеть нам все возможные комбинации при которых функция принимает значения истины или лжи, она подходит, когда нам необходимо такое свойтсво, например, декодер. Дизъюнктивно нормальная форма позволяет нам сократить ее размеры таблицы, для этого, мы используем только те комбинации значений переменных при которых функция принимает только истинные значения. Чтобы создать схему, которая будет принимать истинное значение только с нужными нам комбинациями, нам необходимо представить эти строки в виде минтерм.
Минтерма представляет собой логическую функцию, которая принимает истинное значение только при одном наборе значений входящих в нее переменных, реализуется это за счет взятия И от всех переменных (с или без НЕ). Например !A&B&C (! — НЕ, & — И) принимает истинное значение только, когда A=0, B=C=1. Когда мы представим все истинные строки в виде минтерм, потребуется взять от всех минтерм ИЛИ (дизъюнкцию). Так вот теперь объединяя все выше сказанное мы можем реализовать функцию в виде схемы.
Например, давайте возьмем функцию ИСКЛЮЧАЮЩЕЕ ИЛИ (табл. 1.0). Мы видим, что у нее есть две истинные строки: при A=0, B=1 и A=1, B=0. Мы берем и представляем их как две минтермы, !A&B и A&!B. Действительно, первая минтерма равна 1 только в том случае, когда A=0, B=1; Другая только в том случае, когда A=1, B=0; Как раз таки у нас только такие строки в таблице истинности принимают истинные значения. Теперь когда у нас есть все необходимые минтермы, мы берем от всех минтерм операцию ИЛИ, то есть, (A&!B) | (!A&B). Мы взяли и представили функцию ИСКЛЮЧАЮЩЕЕ ИЛИ в виде формулы, которую можем легко представить в виде логической схемы (рис 1.1а), ведь она состоит из простых функций: двух И и одной ИЛИ. Было бы эффективней если бы мы сократили (рис. 1.1б) кол-во входов, для этого можно объединить A с !A в один вход A, только понадобится еще добавить между новым входом А и старым входом !A вентиль НЕ, чтобы входной сигнала для A был противоположным для старых A и !A; то же самое можем сделать с B и !B.
Рисунок 1.1. Схема ИСКЛЮЧАЮЩЕГО ИЛИ (черта над переменной обозначает НЕ).
Многопроцессорная архитектура ПК
Наличие в ПК нескольких процессоров означает, что параллельно может быть организовано много потоков данных и команд, т.е. одновременно могут выполняться несколько фрагментов одной задачи.
Рисунок 3. Архитектура многопроцессорного ПК
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.
Главное отличие ЭЛТ от ЖК мониторов
В основе работы ЭЛТ монитора лежит специальная стеклянная трубка, внутри которой вакуум. Так же, внутри стеклянной колбы находятся электронные пушки, испускающие поток заряженных частиц (электронов).
Эти электроны заставляют светиться точки люминофора, которым тонким слоем изнутри покрыта передняя стенка электронно-лучевой трубки. То есть энергия электронов превращается в свет, вот эти самые светящиеся точки и формируют изображение.
Принцип работы ЖК монитора совершенно иной. Здесь уже нет никаких трубок, а изображение формируется совершенно другим способом. Жидкокристаллические дисплеи уже имеют в своем названии указание на то, с помощью чего создается изображение на экране. Именно жидкие кристаллы, которые были открыты еще в 1888 году, играют ключевую роль в формировании картинки.
Устройство LCD монитора больше напоминает слоеный пирог, каждый слой имеет свое назначение. Итак, можно выделить несколько слоев, из которых и состоит наш монитор.
Первый слой – это система подсветки ЖК матрицы, она может быть выполнена с применением люминесцентных ламп с холодным катодом, либо светодиодов. Вторым слоем идет рассеивающий фильтр, который позволяет повысить уровень равномерности подсветки всей матрицы. Далее идет первый вертикальный поляризационный фильтр, который пропускает только вертикально направленные световые волны. Четвертым слоем представлена сама матрица, представляющая собой две прозрачные стеклянные пластины, между которыми расположены молекулы поляризационного вещества – жидкие кристаллы. Пятым слоем идут специальные цветофильтры, отвечающие за окрас каждого субпикселя. Ну и последним слоем идет второй, уже горизонтальный поляризационный фильтр, который, как вы уже наверное догадались, пропускает только лишь горизонтальные волны. Вот и все устройство ЖК монитора. [4]
4.3. Современные стандарты и технологии.
На 2020 большая часть рынка мониторов принадлежит брендам LG, NEC, Asus, Lenovo, Dell, Acer, ViewSonic, Samsung и HP. Под каждой из этих марок доступен огромный ассортимент самых разных моделей — от бюджетных до топовых.
Как правило, монитор выбирают по основным критериям, важным для пользователя. Лишь в последнюю очередь ищут информацию о производителе, чтобы узнать, насколько надёжна его техника. Самым осторожным пользователям рекомендуем выбирать модели давно известных марок, которые уже несколько десятков лет присутствуют на рынке мониторов.
Кроме рассмотренных параметров, также может играть роль максимальная частота обновления экрана, возможность регулировки по высоте и поворота на 90º, совместимость по части разъёмов, наличие сенсорного экрана, встроенной акустики или USB-хаба.[5]
3 Средства информационных и коммуникационных технологий
Архитектура компьютера – это его устройство и принципы взаимодействия его основных элементов – логических узлов, среди которых основными являются
– внутренняя память (основная и оперативная),
– устройства ввода-вывода информации (периферийные).
Каждый логический узел компьютера выполняет свои функции.
Центральный процессор [1] — электронный блок либо интегральная схема, исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.
Рисунок 1 – Процессор
– обработка данных (выполнение над ними арифметических и логических операций);
– управление всеми остальными устройствами компьютера.
– Тактовая частота (в МГц, ГГц) и подразумевает под собой количество тактов (вычислений) в секунду.
– Частота шины – тактовая частота (в МГц), с которой происходит обмен данными между процессором и системной шиной материнской платы.
– Множитель – коэффициент умножения, на основании которого производится расчет конечной тактовой частоты процессора, методом умножения частоты шины на коэффициент (множитель).
– Разрядность (32/64 bit) — максимальное количество бит информации, которые процессор может обрабатывать и передавать одновременно.
– Кэш-память первого уровня, L1 — это блок высокоскоростной памяти, который расположен на ядре процессора, в него помещаются данные из оперативной памяти. Сохранение основных команд в кэше L1 повышает быстродействие процессора, так как обработка данных из кэша происходит быстрее, чем при непосредственном взаимодействии с ОЗУ.
– Кэш-память второго уровня, L2 — это блок высокоскоростной памяти, выполняющий те же функции, что и кэш L1, однако имеющий более низкую скорость и больший объем.
– Кэш-память третьего уровня обычно присутствует в серверных процессорах или специальных линейках для настольных ПК.
– Ядро – определяет большинство параметров центрального процессора: тип сокета, диапазон рабочих частот и частоту работы FSB. характеризуется следующими параметрами:
· Техпроцесс Масштаб технологии (мкм), которая определяет размеры полупроводниковых элементов, составляющих основу внутренних цепей процессора.
· Напряжение, которое необходимо процессору для работы и характеризует энергопотребление.
· Тепловыделение – мощность (Вт), которую должна отводить система охлаждения, чтобы обеспечить нормальную работу процессора.
· Тип сокета – то есть разъём для установки процессора на материнской плате.
Оперативная память [2] или оперативное запоминающее устройство (ОЗУ) — энергозависимая часть системы компьютерной памяти, в которой во время работы компьютера хранится выполняемый машинный код (программы), а также входные, выходные и промежуточные данные, обрабатываемые процессором.
Рисунок 2 – Оперативная память
Функции оперативной памяти:
– прием информации от других устройств;
– передача информации по запросу в другие устройства компьютера.
Характеристики оперативной памяти:
– тип DDR — 1, 2, 3, 4;
– тайминги – длительность импульсов и пауз обновления ячеек памяти;
– тактовая частота оперативной памяти — частота в МГц (количество импульсов в секунду), с которой работает оперативная память;
– тактовая частота шины — частота канала, по которому идёт обмен данными между оперативной памятью и процессором;
– пропускная способность — это сколько за секунду времени может быть «пропущено» данных через плату оперативной памяти;
Жёсткий диск, винчестер (накопитель на жёстких магнитных дисках, или НЖМД) [3] — запоминающее устройство произвольного доступа, основанное на принципе магнитной записи.
Винчестер является основным накопителем данных в большинстве компьютеров. Именно на жёсткий диск устанавливается операционная система или другое программное обеспечение.
Рисунок 3 – Жёсткий диск
Характеристики жёстких дисков:
– скорость вращения шпинделя;
– наработка на отказ;
– среднее время ожидания;
– энергопотребление и тепловыделение.
Видеокарта [4] — устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора.
Рисунок 4 – Видеокарта
– производитель видеопроцессора (GPU);
– частота GPU, МГц;
– количество занимаемых слотов на материнской плате;
– объем видеопамяти, ГБ;
– тактовая частота видеопамяти, МГц;
– шина обмена данными с памятью, бит;
– поддержка SLI и CrossFire;
– поддержка разных версий DirectX;
– необходимость дополнительного питания.
В основе архитектуры современных ЭВМ лежит магистрально-модульный принцип (рис. 26), который позволяет комплектовать нужную конфигурацию и производить необходимую модернизацию. Он опирается на шинный принцип обмена информацией между модулями
Рисунок 5 – Магистрально-модульный принцип построения компьютера
Системная шина или магистраль компьютера включает в себя три многоразрядные шины:
– шину данных – для передачи различных данных между устройствами компьютера ;
– шину адреса – для адресации пересылаемых данных, то есть для определения их местоположения в памяти или в устройствах ввода/вывода ;
– шину управления, которая включает в себя управляющие сигналы, которые служат для временного согласования работы различных устройств компьютера, для определения направления передачи данных, для определения форматов передаваемых данных и т. д .
Основой построения модульного устройства компьютера является материнская (или системная) плата [5] — печатная плата, которая содержит основную часть устройства (рис. 6).
Рисунок 6 – Материнская плата
На системной (материнской) плате размещаются:
– генератор тактовых импульсов;
– контроллеры внешних устройств;
– звуковая и видеокарты;
Многопроцессорная архитектура ПК: особенности и нюансы
Если в компьютере несколько процессоров, то его работа выглядит следующим образом – много различных потоков информации реализуются одновременно. Конечно, такие компьютеры имеют преимущества перед компьютерами с одним процессором.
Рисунок 3. Архитектура многопроцессорного ПК