Архитектура персонального компьютера: понятие и принципы работы

Принцип открытой архитектуры компьютера и современные тенденции развития

Компьютерная архитектура (computer architecture) – это разработанный Джоном фон Нейманом набор правил и методов описания функций, которые участвуют в организации работы компьютерных систем. Впервые документальное упоминание данного термина найдено в переписке английского ученого Чарльза Бэббиджа с писательницей и математиком Адой Лавлейс в первой половине ХХ века.

Понятие архитектуры персонального компьютера (ПК) дает нам представление о том, как он устроен, как разные устройства взаимодействуют друг с другом. Они подсоединяются по определенной схеме, а ее вариации и будут разновидностями архитектурных систем.

Любой современный персональный компьютер или ноутбук – это сложное многофункциональное устройство, а не просто мультиплатформенная игровая приставка. Всего можно выделить пять уровней архитектуры электронно вычислительных машин (ЭВМ):

  • нулевой уровень;
  • первый уровень – микроархитектура компьютера;
  • второй – системные команды;
  • третий – операционная система;
  • четвертый – прикладные и системные программы;
  • пятый – уровень высокого языка.

Истоки

Одной из первых появилась в середине прошлого века классическая архитектура персонального компьютера, авторство которой принадлежит Д. Нейману. В статье, изданной Д. Нейманом, Г. Голдштейном и А. Бёрксом были изложены основы конструкции и работы ЭВМ, благодаря этим знаниям и появились новые устройства, которые к нашему времени стали повсеместно доступны и распространены. Конечно, каждый новый выпуск устройств отличался от предыдущего: его характеристики улучшались, модифицировались, добавлялись новые функции, но основа, которой являются сформулированные принципы, оставалась неизменной.

Данные принципы заключаются в следующем:

  1. Машинам гораздо проще использовать двоичный код счисления и руководствоваться им при выполнении различных операций.
  2. Для корректной и системной работы компьютера, ему необходима операционная система. Она служит некой главной программой, которая запускает и контролирует внутренние процессы устройства. Без открытия этого факта, было бы невозможным развитие программирования, так как операционная система в современных компьютерах является базисом его работы.
  3. У персонального компьютера есть память, которая позволяет хранить какой-то объём данных, включая различные программы. При этом все данные и произведённые с ними операции кодируются в двоичном коде.
  4. Благодаря тому, что каждая ячейка памяти имеет свой адрес, компьютер в любой момент времени может обратиться к какой-то из них. Данное открытие позволило программированию перейти к использованию переменных.
  5. Любая часть кода доступна практически в любой момент. Это доказывается тем, что при использовании какой-либо программы, пользователь имеет возможность перейти к использованию другой. Причём эти процессы происходят параллельно друг другу.

Главная особенность заключается в том, что аппаратура остаётся статичной, в то время как набор программ может меняться.

Структура персонального компьютера, предложенная Д. Нейманом, изображена на данной схеме (рис. 1).

Рисунок 1. Структура персонального компьютера

Таким образом, в состав компьютера входили такие части как внешнее и оперативное запоминающее устройство, устройство ввода, устройство вывода, устройство управления (координация) и устройство выполнения арифметико-логических операций.

1.1 Фон-Неймановский принцип архитектуры компьютеров

Любой современный компьютер представляет собой реализацию так называемой фон-неймановской архитектуры вычислительных машин. Эта архитектура была представлена Джорджем фон Нейманом еще в 1945 году и имеет следующие основные признаки. Машина состоит из блока управления, арифметико-логического устройства (АЛУ), памяти и устройств ввода-вывода. В ней реализуется концепция хранимой программы: программы и данные хранятся в одной и той же памяти. Выполняемые действия определяются блоком управления и АЛУ, которые вместе являются основой центрального процессора. Центральный процессор выбирает и исполняет команды из памяти последовательно, адрес очередной команды задается «счетчиком адреса» в блоке управления. Этот принцип исполнения называется последовательной передачей управления. Данные, с которыми работает программа, могут включать переменные – именованные области памяти, в которых сохраняются значения с целью дальнейшего использования в программе.

Рассмотрим схематично классическую структуру вычислительной машины (рис.1), на основе которой уже более полувека создаются ЭВМ.

Рисунок 1 Классическая структура ЭВМ:

АЛУ – арифметико-логическое устройство; ЗУ – запоминающее устройство;

УУ – устройство управления; Увв – устройство ввода; Увыв – устройство вывода.

Устройство управления инициирует работу устройства ввода, давая ему команду на выполнение операции ввода информации в запоминающее устройство ЭВМ. Оно, в свою очередь, указывает, из какого места запоминающего устройства необходимо передать информацию в арифметико-логическое устройство, какую операцию над этой информацией должно выполнить арифметико-логическое устройство, в какое место запоминающего устройства записать результат операции. Оно также инициирует работу устройства вывода для вывода результата из запоминающего устройства и выполняет ряд других функций.

Фон-неймановская архитектура – не единственный вариант построения ЭВМ, есть и другие, которые не соответствуют указанным принципам (например, потоковые машины). Однако подавляющее большинство современных компьютеров основаны именно на указанных принципах, включая и сложные многопроцессорные комплексы, которые можно рассматривать как объединение фон-неймановских машин.

Архитектура IBM

Компанией IBM была разработана архитектура ПК, ставшая фактически одним из мировых стандартов. Ее отличительная особенность — в открытости. То есть компьютер в рамках нее перестает быть готовым продуктом от бренда. Компания IBM — не монополист рынка, хотя один из его первопроходцев в аспекте разработки соответствующей архитектуры.

Пользователь или компания, собирающие ПК на платформе IBM, могут самостоятельно определять то, какие компоненты будут включены в структуру компьютера. Также возможна замена того или иного электронного компонента на более совершенный. Стремительное развитие компьютерных технологий позволило реализовать принцип открытой архитектуры ПК.

Персональные компьютеры

Следующий тип компьютерной архитектуры — ПК. Вероятно, он является самым распространенным. ПК не столь мощны и высокопроизводительны как мейнфреймы и микро-ЭВМ, но во многих случаях способны решать задачи и в сфере промышленности, и в области науки, не говоря о типичных пользовательских задачах, таких как запуск приложений и игр.

Архитектура компьютера и проектирование компьютерных систем

Еще одна примечательная особенность, характеризующая персональные компьютеры, заключается в том, что их ресурсы могут быть объединены. Вычислительные мощности достаточно большого количества ПК, таким образом, могут быть сопоставимы с производительностью компьютерных архитектур вышестоящего класса, но, конечно, достигнуть их уровней номинально с помощью ПК весьма проблематично.

Тем не менее архитектура компьютерных систем, сетей на основе персональных компьютеров характеризуется универсальностью, с точки зрения реализации в различных отраслях, доступностью и масштабируемостью.

3 Средства информационных и коммуникационных технологий

Архитектура компьютера – это его устройство и принципы взаимодействия его основных элементов – логических узлов, среди которых основными являются

– внутренняя память (основная и оперативная),

– устройства ввода-вывода информации (периферийные).

Каждый логический узел компьютера выполняет свои функции.

Центральный процессор [1] — электронный блок либо интегральная схема, исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

https://static-interneturok.cdnvideo.ru/content/konspekt_image/292283/2e6d8870_aafd_0133_15c4_12313c0dade2.jpg

Рисунок 1 – Процессор

– обработка данных (выполнение над ними арифметических и логических операций);

– управление всеми остальными устройствами компьютера.

– Тактовая частота (в МГц, ГГц) и подразумевает под собой количество тактов (вычислений) в секунду.

– Частота шины – тактовая частота (в МГц), с которой происходит обмен данными между процессором и системной шиной материнской платы.

– Множитель – коэффициент умножения, на основании которого производится расчет конечной тактовой частоты процессора, методом умножения частоты шины на коэффициент (множитель).

– Разрядность (32/64 bit) — максимальное количество бит информации, которые процессор может обрабатывать и передавать одновременно.

– Кэш-память первого уровня, L1 — это блок высокоскоростной памяти, который расположен на ядре процессора, в него помещаются данные из оперативной памяти. Сохранение основных команд в кэше L1 повышает быстродействие процессора, так как обработка данных из кэша происходит быстрее, чем при непосредственном взаимодействии с ОЗУ.

– Кэш-память второго уровня, L2 — это блок высокоскоростной памяти, выполняющий те же функции, что и кэш L1, однако имеющий более низкую скорость и больший объем.

– Кэш-память третьего уровня обычно присутствует в серверных процессорах или специальных линейках для настольных ПК.

– Ядро – определяет большинство параметров центрального процессора: тип сокета, диапазон рабочих частот и частоту работы FSB. характеризуется следующими параметрами:

· Техпроцесс Масштаб технологии (мкм), которая определяет размеры полупроводниковых элементов, составляющих основу внутренних цепей процессора.

· Напряжение, которое необходимо процессору для работы и характеризует энергопотребление.

· Тепловыделение – мощность (Вт), которую должна отводить система охлаждения, чтобы обеспечить нормальную работу процессора.

· Тип сокета – то есть разъём для установки процессора на материнской плате.

Оперативная память [2] или оперативное запоминающее устройство (ОЗУ) — энергозависимая часть системы компьютерной памяти, в которой во время работы компьютера хранится выполняемый машинный код (программы), а также входные, выходные и промежуточные данные, обрабатываемые процессором.

Рисунок 2 – Оперативная память

Функции оперативной памяти:

– прием информации от других устройств;

– передача информации по запросу в другие устройства компьютера.

Характеристики оперативной памяти:

– тип DDR — 1, 2, 3, 4;

– тайминги – длительность импульсов и пауз обновления ячеек памяти;

– тактовая частота оперативной памяти — частота в МГц (количество импульсов в секунду), с которой работает оперативная память;

– тактовая частота шины — частота канала, по которому идёт обмен данными между оперативной памятью и процессором;

– пропускная способность — это сколько за секунду времени может быть «пропущено» данных через плату оперативной памяти;

Жёсткий диск, винчестер (накопитель на жёстких магнитных дисках, или НЖМД) [3] — запоминающее устройство произвольного доступа, основанное на принципе магнитной записи.

Винчестер является основным накопителем данных в большинстве компьютеров. Именно на жёсткий диск устанавливается операционная система или другое программное обеспечение.

https://conceptodefinicion.de/wp-content/uploads/2014/11/disco-duro-2.jpg

Рисунок 3 – Жёсткий диск

Характеристики жёстких дисков:

– скорость вращения шпинделя;

– наработка на отказ;

– среднее время ожидания;

– энергопотребление и тепловыделение.

Видеокарта [4] — устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора.

https://mmedia.ozone.ru/multimedia/1016189165.jpg

Рисунок 4 – Видеокарта

– производитель видеопроцессора (GPU);

– частота GPU, МГц;

– количество занимаемых слотов на материнской плате;

– объем видеопамяти, ГБ;

– тактовая частота видеопамяти, МГц;

– шина обмена данными с памятью, бит;

– поддержка SLI и CrossFire;

– поддержка разных версий DirectX;

– необходимость дополнительного питания.

В основе архитектуры современных ЭВМ лежит магистрально-модульный принцип (рис. 26), который позволяет комплектовать нужную конфигурацию и производить необходимую модернизацию. Он опирается на шинный принцип обмена информацией между модулями

https://bstudy.net/htm/img/4/11122/116.png

Рисунок 5 – Магистрально-модульный принцип построения компьютера

Системная шина или магистраль компьютера включает в себя три многоразрядные шины:

– шину данных – для передачи различных данных между устройствами компьютера ;

– шину адреса – для адресации пересылаемых данных, то есть для определения их местоположения в памяти или в устройствах ввода/вывода ;

– шину управления, которая включает в себя управляющие сигналы, которые служат для временного согласования работы различных устройств компьютера, для определения направления передачи данных, для определения форматов передаваемых данных и т. д .

Основой построения модульного устройства компьютера является материнская (или системная) плата [5] — печатная плата, которая содержит основную часть устройства (рис. 6).

https://im0-tub-ru.yandex.net/i?id=531c02e7ce0a847f9f30e574b7ba82b5-l&n=13

Рисунок 6 – Материнская плата

На системной (материнской) плате размещаются:

– генератор тактовых импульсов;

– контроллеры внешних устройств;

– звуковая и видеокарты;

Как узнать архитектуру?

В случае с новыми ЦП прочитать их характеристики можно в инструкции или непосредственно на коробке. Но что делать, если вы берете устройство с рук? Или может быть хотите знать, какая архитектура у вашего проца? Выяснить это можно несколькими способами.

Средства системы

Выполните следующие действия:

  • Откройте командную строку через меню «Пуск — Программы — Стандартные» или другим удобным способом.
  • Впишите в нее слово systeminfo.
  • Нажмите Enter.

Перед вами появятся сведения об операционке, среди которой будет и архитектура процессора.

Архитектура процессора

  • Щелкните правой кнопкой мыши на значке «Мой компьютер»;
  • Откройте «Свойства»;
  • Перейдите в «Диспетчер устройств»;
  • Кликните пункт «Процессор».

И тоже получите все данные о нем.

Вызываем диспетчер устройств

Сторонние программы

X86-64 в CPU-Z

Одной из хороших программ, помогающих узнать все о проце, является CPU-Z .

Она бесплатная и распространенная, поэтому вы без проблем ее отыщите и скачаете.

Вам нужно лишь установить и запустить ее, чтобы посмотреть необходимую информацию.

В качестве альтернативного варианта могу предложить еще одну достойную прогу — AIDA 64 . Она платная (Есть триал период), зато может рассказать все о вашем железе в целом, не только о ЦП.

Получить сведения о процессоре через нее можно, перейдя по разделам «Компьютер — Системная плата — ЦП».

Тоже и в АИДА

На этом буду заканчивать.

Чтобы не забывать заглядывать ко мне чаще и узнавать больше новой интересной информации, подписывайтесь на обновления.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector