Архитектура персонального компьютера

Классическая архитектура ПК. Основные особенности архитектуры современных ПК

Несмотря на то что современные модели компьютеров представлены на рынке широким спектром брендов, собраны они в рамках небольшого количества архитектур. С чем это связано? Какова специфика архитектуры современных ПК? Какие программные и аппаратные компоненты ее формируют?

Что такое архитектура ПК? Под этим довольно широким термином принято понимать совокупность логических принципов сборки компьютерной системы, а также отличительные особенности технологических решений, внедряемых в нее. Архитектура ПК может быть инструментом стандартизации. То есть компьютеры в рамках нее могут собираться согласно установленным схемам и технологическим подходам. Объединение тех или иных концепций в единую архитектуру облегчает продвижение модели ПК на рынке, позволяет создавать программы, разработанные разными брендами, но гарантированно подходящие для нее. Единая архитектура ПК также позволяет производителям компьютерной техники активно взаимодействовать на предмет совершенствования тех или иных технологических компонентов ПК.

Архитектура ПК

Под рассматриваемым термином может пониматься совокупность подходов к сборке компьютеров или отдельных его компонентов, принятых на уровне конкретного бренда. В этом смысле архитектура, которая разработана производителем, является его интеллектуальной собственностью и используется только им, может выступать конкурентным инструментом на рынке. Но даже в таком случае решения от разных брендов иногда могут быть классифицированы в рамках общей концепции, объединяющей в себе ключевые критерии, которые характеризуют компьютеры различных моделей.

Термин «архитектура ПК» информатика как отрасль знаний может понимать по-разному. Первый вариант трактовки предполагает интерпретацию рассматриваемого понятия как стандартизирующего критерия. В соответствии с другой интерпретацией архитектура — это, скорее, категория, позволяющая одному бренду-производителю стать конкурентным в отношении других.

Интереснейший аспект — то, как соотносятся история и архитектура ПК. В частности, это появление классической логической схемы конструирования компьютеров. Рассмотрим ее особенности.

Классическая архитектура фон Неймана

В $1946$ году американские математики Джон фон Нейман, Герман Голдштейн и Артур Бёркс в совместной статье изложили новые принципы построения и функционирования ЭВМ. На основе этих принципов производилось $1$-е и $2$-е поколение компьютеров. В следующих поколениях происходили некоторые изменения, но принципы фон Неймана (как они были названы) сохранялись.

Основные принципы фон Неймана:

  1. Использование двоичной системы счисления в ПК, в которой устройствам гораздо проще выполнять арифметико-логические операции, чем в десятичной.
  2. Программное управление ПК. Работа ПК управляется программой, которая состоит из набора команд, выполняющихся последовательно одна за другой. Создание машины с хранимой в памяти программой положило начало программированию.
  3. Данные и программы хранятся в памяти ПК. Команды и данные кодируются одинаково в двоичной системе.
  4. Ячейки памяти ПК имеют последовательно пронумерованные адреса. Возможность обращения к любой ячейке памяти по ее адресу позволила использовать переменные в программировании.
  5. Возможность условного перехода при выполнении программы. Команды в ПК выполняются последовательно, но при необходимости можно реализовать переход к любой части кода.

Основным принципом было то, что программа уже стала не постоянной частью машины, а изменяемой, в отличие от аппаратуры, которая остается неизменной и очень простой.

Готовые работы на аналогичную тему

Фон Нейманом также была предложена структура ПК (рис. 1).

Структура ПК

Рисунок 1. Структура ПК

В состав машины фон Неймана входили:

  • запоминающее устройство (ЗУ);
  • арифметико-логическое устройство (АЛУ), которое выполняло все арифметические и логические операции;
  • устройство управления (УУ), которое координирует действия всех узлов машины в соответствии с программой;
  • устройства ввода-вывода.

Программы и данные вводились в ЗУ из устройства ввода через АЛУ. Все команды программы записывались в ячейки памяти последовательно, а данные для обработки – в произвольные ячейки.

Команда состояла из указания операции, которую необходимо выполнить, и адресов ячеек памяти, в которых хранятся данные и над которыми необходимо выполнить нужную операцию, а также адреса ячейки, в которую необходимо записать результат (для хранения в ЗУ).

Из АЛУ результаты выводятся в ЗУ или устройство вывода. Принципиально эти устройства отличаются тем, что в ЗУ данные хранятся в удобном для обработки ПК виде, а на устройства вывода (монитор, принтер и т.п.) в удобном для человека.

От УУ на другие устройства поступают сигналы с командами, а от других устройств УУ получает информацию о результате их выполнения.

В УУ содержится специальный регистр (ячейка) – счетчик команд, в который записывается адрес первой команды программы. УУ считывает из памяти содержимое соответствующей ячейки памяти и помещает его в специальное устройство – регистр команд. УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды. Операцию выполняет АЛУ или аппаратные средства компьютера.

После выполнения команды счетчик команд увеличивается на $1$ и указывает на следующую команду программы. При необходимости выполнения команды, которая не следует по порядку за текущей, специальная команда перехода содержит адрес ячейки, в которую нужно передать управление.

Конспект урока «Архитектура персонального компьютера»

На этом уроке мы с вами познакомимся с магистрально-модульным принципом построения компьютера, узнаем, что относится к основным логическим узлам компьютера, рассмотрим, какие устройства находятся на материнской плате, и многое другое.

Компьютер – это многофункциональное электронное устройство, предназначенное для накопления, обработки и передачи информации.

К основным логическим узлам компьютера относятся центральный процессор, основная память, внешняя память, периферийные устройства.

Персональные компьютеры начали появляться благодаря развитию микропроцессоров в 1980-х годах.

Архитектура персонального компьютера – это логическая организация, структура и ресурсы, то есть средства вычислительной системы, которые могут быть выделены процессу обработки данных на определённый интервал времени.

В основе архитектуры современных персональных компьютеров лежит магистрально-модульный принцип. Давайте рассмотрим рисунок.

Итак, перед вами изображена архитектура персонального компьютера. На ней изображены функциональные блоки персонального компьютера, к которым относятся устройства ввода/вывода, внешние запоминающие устройства, центральный процессор, память и видеопамять. Все эти блоки соединены между собой информационной магистралью, которая называется системной шиной. Она состоит из трёх частей: шина данных, шина адреса, шина управления. Шина данных используется для передачи данных к функциональным блокам. Шина адреса предназначена для передачи адресов устройств, которым передаются данные. И последняя, шина управления используется для передачи управляющих сигналов, которые синхронизируют работу разных устройств. То есть через шину передаются все данные от одного устройства к другому.

Также на рисунке у нас есть такие элементы, как контроллеры. Контроллеры – это периферийные устройства, которые управляют внешними устройствами. Передача всех данных осуществляется через шину.

Также мы можем видеть на рисунке сплошные и пунктирные стрелки. Сплошными стрелками изображены направления потоков информации, а пунктирными – направление управляющих сигналов.

В этой архитектуре существует такое значительное достоинство, как принцип открытой архитектуры. То есть мы можем подключать к компьютеру новые устройства или заменять старые на более современные. Для каждого типа и модели устройства используется свой контроллер.

Например, если мы подключим компьютерную мышь через USB-порт, то она определится у нас на компьютере только после установки в операционную систему специальной программы для управления этим устройством. Такие программы называются драйверами устройств.

Таким образом, можно сформулировать следующее определение: открытая архитектура персонального компьютера – это архитектура, предусматривающая модульное построение компьютера с возможностью добавления и замены отдельных устройств.

Это то, что касается принципов обмена информацией между устройствами.

Материнская плата – это сложная многослойная печатная плата, являющаяся основой построения вычислительной системы.

Изначально дополнительные устройства (например, внутренний модем, сетевой адаптер беспроводной связи Wi-fi, звуковая плата и так далее) подключались к материнской плате с помощью слотов расширения и разъёмов.

В наше время такая необходимость отпала, так как большинство дополнительных устройств уже встроены в современные материнские (системные) платы.

Основными (несъёмными) частями материнской платы являются разъём процессора, разъёмы оперативной памяти, микросхемы чипсета, загрузочное ПЗУ, контроллеры шин и их слоты расширения, контроллеры и интерфейсы периферийных устройств.

Важнейшей частью материнской платы является чипсет. Чипсет – это набор микросхем, который связывает память, процессор, видеоадаптер, устройства ввода/вывода и другие элементы персонального компьютера, для выполнения совместных функций.

В современных компьютерах находятся две основные большие микросхемы чипсета: контроллер-концентратор памяти (северный мост) и контроллер-концентратор ввода/вывода (южный мост).

Давайте рассмотрим схему архитектуры персонального компьютера.

Северный мост отвечает за работу процессора с оперативной памятью и видеосистемой. От его параметров (тип, частота, пропускная способность) зависят параметры подключённых к нему устройств: системной шины, оперативной памяти, видеоадаптера. Северный мост подключается напрямую к центральному процессору через системную шину.

Южный мост обеспечивает работу с внешними устройствами и обычно подключается к центральному процессору через северный мост при помощи внутренней шины.

Все устройства компьютера соединены между собой шинами различных видов.

Быстродействие процессора, оперативной памяти и периферийных устройств существенно различаются. Быстродействие устройства, в свою очередь, зависит от тактовой частоты обработки данных, которая обычно измеряется в мегагерцах, и разрядности. Разрядность – это количество битов данных, обрабатываемых за один такт. Такт – это промежуток времени между подачами электрических импульсов, которые синхронизируют работу устройств компьютера.

Пропускная способность шины – это скорость передачи данных между устройствами, которые она соединяет. А исходя из вышесказанного, можно сделать вывод, что скорость передачи данных различных шин будет также отличаться. Рассмотрим формулу для вычисления пропускной способности шины (измеряется в битах в секунду). Она равна произведению разрядности шины и частоты шины. Разрядность измеряется в битах, частота – в герцах, в свою очередь, 1 герц равен 1 такту в секунду.

Например, для быстрой работы компьютера пропускная способность шины оперативной памяти должна совпадать с пропускной способностью шины процессора.

Как говорилось ранее, Северный мост связан с процессором системной шиной. Например, если разрядность системной шины составляет 64 бита, а частота – 1066 МГц, то пропускная способность будет равна:

64 · 1066 = 68 224 Мбит/с ≈ 66,6 Гбит/с ≈ 8 Гбайт/с.

Перейдём к частоте процессора. Тактовая частота процессора показывает, сколько процессор может произвести вычислений в единицу времени. Из этого следует вывод, что чем больше частота, тем больше операций в единицу времени может выполнить процессор. Тактовая частота современных процессоров составляет от 1 до 4 ГГц. Рассмотрим формулу. Тактовая частота равна произведению внешней или базовой частоты на определённый коэффициент. Коэффициент зависит от характеристик процессора. Например, процессор Intel Core i7 920 использует частоту шины 133 МГц и множитель 20. Значит, тактовая частота будет равна:

133 · 20 = 2660 МГц.

Шина памяти соединяет оперативную память и северный мост, и, соответственно, служит для передачи данных между этими устройствами.

Частота шины памяти может быть больше частоты системной шины.

Следующая шина, которую мы рассмотрим, – PCI Express. Она соединяет видеоплату с северным мостом.

Так как в наше время очень быстро развивается компьютерная графика, то потребность в скорости передачи данных от видеоплаты к оперативной памяти и процессору возрастает. Наибольшее распространение получила шина PCI Express – это ускоренная шина взаимодействия периферийных устройств. Её пропускная способность может достигать до 32 гигабайт в секунду.

К самой же видеоплате с помощью аналогового разъёма VGA (графический адаптер) или цифрового разъёма DVI (цифровой видеоинтерфейс) подключается монитор или проектор.

Жёсткие диски, CD-дисководы, DVD-дисководы подключаются к южному мосту при помощи шины SATA – это последовательная шина подключения накопителей.

Скорость передачи данных по ней может достигать 300 Мбайт в секунду.

Для подключения периферийный устройств (принтера, клавиатуры, сканера и других), которые имеют USB-выход, к южному мосту используется шина USB – это универсальная последовательная шина.

Её пропускная способность достигает 60 Мегабайт в секунду. При помощи шины USB к компьютеру можно одновременно подключить до 127 периферийных устройств.

При увеличении производительности процессора происходит увеличение производительности самого компьютера.

Увеличение производительности процессора происходит за счёт увеличения частоты. Но, как говорится, всему есть свой предел. При увеличении частоты процессора происходит также увеличение тепловыделения, которое не может быть не ограниченным. Выделение процессором теплоты Q пропорционально потребляемой мощности P, которая, в свою очередь, пропорциональна квадрату частоты.

Поэтому для того, чтобы увеличить производительность процессора, начали увеличивать количество ядер процессора (арифметических логических устройств).

В 2005 году был создан первый двухъядерный микропроцессор. Это сделали практически одновременно две фирмы – Intel и AMD. Такая архитектура позволяет производить на персональном компьютере параллельную обработку данных, что существенно увеличивает его производительность. Можно сказать, что в архитектуре находятся 2 центральных процессора, работа которых согласована между собой, и они объединены между собой, например, контроллером. За счёт этого поток данных идёт не к одному центральному процессору, а разделяется на два. И увеличивается быстродействие компьютера.

В настоящее время количество ядер в микропроцессорах достигает 8.

А сейчас пришло время подвести итоги урока.

Сегодня мы с вами познакомились с магистрально-модульным принципом построения компьютера. Рассмотрели, какие устройства находятся на материнской плате. А также подробно ознакомились с архитектурой персонального компьютера.

Архитектура персонального компьютера

Основной принцип построения ЭВМ носит название архитектуры фон Неймана — американского ученого венгерского происхождения Джона фон Неймана, который ее предложил.

Современную архитектуру компьютера определяют следующие принципы:

  1. Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера. Эффективность программного управления будет выше при решении задачи этой же программой много раз (хотя и с разными начальными данными).
  2. Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в оперативную память, что ускоряет процесс ее выполнения.
  3. Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место оперативной памяти, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

На основании этих принципов можно утверждать, что современный компьютер — техническое устройство, которое после ввода в память начальных данных в виде цифровых кодов и программы их обработки, выраженной тоже цифровыми кодами, способно автоматически осуществить вычислительный процесс, заданный программой, и выдать готовые результаты решения задачи в форме, пригодной для восприятия человеком.

Персональный компьютер типа IBM PC имеет довольно традиционную архитектуру микропроцессорной системы и содержит все обычные функциональные узлы: процессор, постоянную и оперативную память, устройства ввода/вывода, системную шину, источник питания.

Рисунок 2.Архитектура персонального компьютера типа

Основные особенности архитектуры персональных компьютеров сводятся к принципам компоновки аппаратуры, а также к выбранному набору системных аппаратных средств.

Основные узлы компьютера следующие (Рисунок 2):

Центральный процессор — это микропроцессор со всеми необходимыми вспомогательными микросхемами, включая внешнюю кэш-память и контроллер системной шины. (О кэш-памяти подробнее будет рассказано в следующих разделах). В большинстве случаев именно центральный процессор осуществляет обмен по системной шине.

Оперативная память может занимать почти все адресуемое пространство памяти процессора. Однако чаще всего ее объем гораздо меньше. В современных персональных компьютерах стандартный объем системной памяти составляет, как правило, от 64 до 512 Мбайт. Оперативная память компьютера выполняется на микросхемах динамической памяти и поэтому требует регенерации.

Постоянная память (ROM BIOS — Base Input/Output System) имеет небольшой объем (до 64 Кбайт), содержит программу начального запуска, описание конфигурации системы, а также драйверы (программы нижнего уровня) для взаимодействия с системными устройствами.

Контроллер прерываний преобразует аппаратные прерывания системной магистрали в аппаратные прерывания процессора и задает адреса векторов прерывания. Все режимы функционирования контроллера прерываний задаются программно процессором перед началом работы.

Контроллер прямого доступа к памяти принимает запрос на ПДП из системной магистрали, передает его процессору, а после предоставления процессором магистрали производит пересылку данных между памятью и устройством ввода/вывода. Все режимы функционирования контроллера ПДП задаются программно процессором перед началом работы. Использование встроенных в компьютер контроллеров прерываний и ПДП позволяет существенно упростить аппаратуру применяемых плат расширения.

Контроллер регенерации осуществляет периодическое обновление информации в динамической оперативной памяти путем проведения по шине специальных циклов регенерации. На время циклов регенерации он становится хозяином (задатчиком) шины.

Перестановщик байтов данных помогает производить обмен данными между 16-разрядным и 8-разрядным устройствами, пересылать целые слова или отдельные байты.

Часы реального времени и таймер-счетчик — это устройства для внутреннего контроля времени и даты, а также для программной выдержки временных интервалов, программного задания частоты и т.д.

Системные устройства ввода/вывода — это те устройства, которые необходимы для работы компьютера и взаимодействия со стандартными внешними устройствами по параллельному и последовательному интерфейсам. Они могут быть выполнены на материнской плате, а могут располагаться на платах расширения.

Платы расширения устанавливаются в слоты (разъемы) системной магистрали и могут содержать оперативную память и устройства ввода/вывода. Они могут обмениваться данными с другими устройствами на шине в режиме программного обмена, в режиме прерываний и в режиме ПДП. Предусмотрена также возможность захвата шины, то есть полного отключения от шины всех системных устройств на некоторое время.

Важная особенность подобной архитектуры — ее открытость, то есть возможность включения в компьютер дополнительных устройств, причем как системных устройств, так и разнообразных плат расширения. Открытость предполагает также возможность простого встраивания программ пользователя на любом уровне программного обеспечения компьютера.

Первый компьютер семейства, получивший широкое распространение, IBM PC XT, был выполнен на базе оригинальной системной магистрали PC XT-Bus. В дальнейшем (начиная с IBM PC AT) она была доработана до магистрали, ставшей стандартной и получившей название ISA (Industry Standard Architecture). До недавнего времени ISA оставалась основой компьютера.

Однако, начиная с появления процессоров i486 (в 1989 году), она перестала удовлетворять требованиям производительности, и ее стали дублировать более быстрыми шинами: VLB (VESA Local Bus) и PCI (Peripheral Component Interconnect bus) или заменять совместимой с ISA магистралью EISA (Enhanced ISA).Постепенно шина PCI вытеснила конкурентов и стала фактическим стандартом, а начиная с 1999 года в новых компьютерах рекомендуется полностью отказываться от магистрали ISA, оставляя только PCI. Правда, при этом приходится отказываться от применения плат расширения, разработанных за долгие годы для подключения к магистрали ISA.

Другое направление совершенствования архитектуры персонального компьютера связано с максимальным ускорением обмена информацией с системной памятью. Именно из системной памяти компьютер читает все исполняемые команды, и в системной же памяти он хранит данные. То есть больше всего обращений процессор совершает именно к памяти. Ускорение обмена с памятью приводит к существенному ускорению работы всей системы в целом.

Но при использовании для обмена с памятью системной магистрали приходится учитывать скоростные ограничения магистрали. Системная магистраль должна обеспечивать сопряжение с большим числом устройств, поэтому она должна иметь довольно большую протяженность; она требует применения входных и выходных буферов для согласования с линиями магистрали. Циклы обмена по системной магистрали сложны, и ускорять их нельзя. В результате существенного ускорения обмена процессора с памятью по магистрали добиться невозможно.

Разработчиками был предложен следующий подход. Системная память подключается не к системной магистрали, а к специальной высокоскоростной шине, находящейся «ближе» к процессору, не требующей сложных буферов и больших расстояний. В таком случае обмен с памятью идет с максимально возможной для данного процессора скоростью, и системная магистраль не замедляет его. Особенно актуальным это становится с ростом быстродействия процессора (сейчас тактовые частоты процессоров персональных компьютеров достигают 1 — 3 ГГц).

Таким образом, структура персонального компьютера из одношинной, применявшейся только в первых компьютерах, становится трехшинной.

Рисунок 3.Организация связей в случае трехшинной структуры

Назначение шин следующее(Рисунок 3):

  • к локальной шине подключаются центральный процессор и кэш-память (быстрая буферная память);
  • к шине памяти подключается оперативная и постоянная память компьютера, а также контроллер системной шины;
  • к системной шине (магистрали) подключаются все остальные устройства компьютера.

Все три шины имеют адресные линии, линии данных и управляющие сигналы. Но состав и назначение линий этих шин не совпадают между собой, хотя они и выполняют одинаковые функции. С точки зрения процессора, системная шина (магистраль) в системе всего одна, по ней он получает данные и команды и передает данные как в память, так и в устройства ввода/вывода.

Временные задержки между системной памятью и процессором в данном случае минимальны, так как локальная шина и шина памяти соединены только простейшими быстродействующими буферами. Еще меньше задержки между процессором и кэш-памятью, подключаемой непосредственно к локальной шине процессора и служащей для ускорения обмена процессора с системной памятью.

Если в компьютере применяются две системные шины, например, ISA и PCI, то каждая из них имеет свой собственный контроллер шины, и работают они параллельно, не влияя друг на друга. Тогда получается уже четырехшинная, а иногда и пятишинная структура.

Рисунок 4.Пример многошинной структуры

В наиболее распространенных настольных компьютерах класса Desktop в качестве конструктивной основы используется системная или материнская плата (motherboard), на которой располагаются все основные системные узлы компьютера, а также несколько разъемов (слотов) системной шины для подключения дочерних плат — плат расширения (интерфейсных модулей, контроллеров, адаптеров). Как правило, современные системные платы допускают замену процессора, выбор его тактовой частоты, замену и наращивание оперативной памяти, выбор режимов работы других узлов.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector