Кастомные системы водяного охлаждения. Как начать с самого начала
Рано или поздно каждый, кто увлекается компьютерным железом, хочет иметь у себя в составе ПК мощную систему охлаждения. Кто-то покупает себе огромные башни, кто-то готовые небольшие и недорогие системы жидкостного охлаждения. Конечно, всегда необходимо отталкиваться от задач, которые вы преследуете при покупке той или иной системы охлаждения, а также от конечной стоимости в соответствии с вашим бюджетом. Мы же с вами рассмотрим кастомные системы водяного охлаждения (СВО) в общем виде.
Сразу хотелось бы акцентировать внимание на нескольких ключевых моментах:
- Мы рассмотрим СВО в общем виде, мы не будем проводить расчёты систем водяного охлаждения, а будем опираться на базовые принципы, которые позволят вам использовать кастомное СВО и при этом ни о чём не задумываться.
- Очень часто будет употребляться слово “кастом” и его производные. Это — позаимствованное с английского языка слово custom и один из вариантов перевода — заказ. Грубо говоря, “система водяного охлаждения изготовлена на заказ”. Конечно, такое выражение режет слух; вы сами себе заказчик, исполнитель и выбираете, какие компоненты будут у вас в СВО в отличии от готовых систем, поэтому используется понятие кастом. Конечно, есть готовые кастомные системы, в которых вам любезно в коробку положат все необходимые компоненты и вы сами из них соберёте СВО, но зачастую такие системы обходятся дороже, чем самостоятельная сборка.
- В статье будет использоваться понятие контура, т.к. любая СВО — замкнутая система, в которой жидкость постоянно находится и циркулирует при работе системы.
Строение жидкостной системы охлаждения ПК
Система водяного охлаждения включает в себя радиатор и трубки, по которым проходит рабочая жидкость. Но не только. В нее также входит насос для того, чтобы прокачивать жидкость, резервуар для того, чтобы можно было компенсировать тепловое расширение жидкости.
Есть и теплосъемник. Так называется металлическая пластина, собирающая тепло с компонентов компьютера.
В любом случае жидкостная система охлаждения компьютера состоит из комбинации нескольких типов схем, о которых мы сейчас расскажем.
1. Схема, у которой параллельное подключение узлов. Узлы подвержены охлаждению. Это параллельная схема работы. Достоинства этой структуры заключаются в простой реализации схемы, легко просчитываемые в характеристиках узлов, которые легко просчитываются и нуждаются в охлаждении.
2. Последовательная структурная схема. В ней каждый охлаждаемый компонент параллельно подключен к другому. Преимущества такой схемы очевидны. Они в том, что каждый из узлов охлаждается эффективно. Недостаток один. Возникает немало проблем, чтобы направить достаточное количество хладагента к определённому узлу.
3. Комбинированные схемы – самые сложные, поскольку в них сразу несколько элементов. Причем, как с последовательным, так и с параллельным подключением.
Водяное охлаждение для ПК – плюсы и минусы
Споры о целесообразности приобретения жидкостных установок не утихают. Для начала рассмотрим преимущества водяного охлаждения для ПК:
- Компьютер с водяным охлаждением издает меньше шума.
- Водяные охладители намного эффективнее.
- Водяное охлаждение для ПК занимает сравнительно мало места.
- Система водяного охлаждения способна одновременно использоваться для отвода тепла сразу от нескольких ответственных узлов устройства (видеокарты, CPU, винчестера).
Недостатки водяного охлаждения ПК:
- Устройство сравнительно сложнее, для монтажа требуются собственные специальные навыки или привлечение специалиста.
- Существует потенциальный риск протечки жидкого теплоносителя на узлы ПК.
- Для функционирования системы используется специальная жидкость.
- Высокая стоимость.
- Водяное охлаждение для ПК периодически требует профилактики – прочистки микроканалов и замены теплоносителя.
Какое охлаждение лучше водяное или воздушное?
Желательно все варианты рассматривать в конкретных условиях, исходя из мощности собственного компьютера. Для простых задач хватает нескольких стандартных кулеров, но сравнительно мощные устройства требуют эффективного отвода тепла. Попытаемся изучить, что лучше водяное охлаждение процессора или воздушное, исходя из следующих критериев:
- Простота монтажа – воздушные кулеры проще и быстрее устанавливать.
- Стоимость – монтаж СВО обойдется пользователю дороже.
- Использование жидкостных охладителей разрешает осуществлять более тонкие настройки, включая в контур множество дополнительных компонентов.
- Размеры – в корпусе компьютера требуется больше места для монтажа радиатора и трубок.
- Уровень шума – комп с водяным охлаждением работает тише благодаря меньшей скорости вентиляторов.
- Эффективность – жидкий теплоноситель лучше перемещает тепло, разрешая увеличивать мощность приборов.
Почему универсальное водяное охлаждение лучше самосбора?
Как видно из представленного выше списка оборудования, для водяного охлаждения ПК задействовано множество компонентов. Да и сама процедура сборки не то чтобы простая. Именно поэтому на начальном этапе логичнее выбрать СВО формата «все в одном», которые объединяют в себе вышеуказанные элементы в простом для установке комплексе. К тому же такие универсальные системы обойдутся дешевле.
Универсальные СВО оптимально подходят и для новичков, и для опытных пользователей, поскольку не предлагают собирать систему охлаждения самостоятельно из множества деталей: Насос зафиксирован прямо на водоблоке, трубки и фитинги предварительно собраны, и все сделано так, чтобы вам не приходилось возиться с водой. При этом такие системы обеспечивают не менее эффективный теплоотвод, чем самосбор.
Обратите внимание, что жидкостное охлаждение формата «все в одном» может применяться не только в связке с центральными процессорами материнских плат, но и с графическими картами. Кстати, есть еще одна причина, которая оправдывает использование универсальных СВО: программное обеспечение. Как правило, каждый производитель таких систем предлагает софт, позволяющий создавать устанавливать индивидуальные профили скорости вращения вентиляторов и работы насоса, контролировать нагрев CPU/GPU и настраивать RGB-подсветки.
Необслуживаемые СВО
Не хотите париться насчет обслуги – купите водянку закрытого типа. Да, она охлаждает только один контур, но и проблем с ней гораздо меньше. Мы можем порекомендовать такие проверенные годами решения как:
- GameMax Iceberg 120;
- DeepCool Captain 120EX RGB;
- Corsair Hydro H100i v2.
Они недорогие, бесшумные, просты в установке и пользуются огромным спросом на рынке. А чего еще надо от водянки? Думаю вам было полезно прочитать эту статью, не забывайте делиться с близкими и подписываться на обновления. Пока.
ФИТИНГИ
Та маленькая, но очень важная часть, без которой бы не смогла полноценно функционировать ни одна система водяного охлаждения. Фитингов существует очень много и отличаются они по дизайну, типу совместимых шлангов, материалу и т.д. Самыми распространёнными являются фитинги для трубок 10/13, то есть с внутренним диаметром 10 мм и внешним 13 мм. Есть фитинги с гайкой (компрессионные), а есть классические фитинги-елочки (штуцеры), на которые шланг просто надевается и зажимается скобой. В целом, по фитингам, особых нюансов нет. Просто выбирай нужный по дизайну, типу шланга, ну и материалу.
Разновидностью фитингов являются адаптеры, которые позволяют сделать контур СВО более красивым и избавить его от «вермишели» из трубок. Ведь трубки имеют большой радиус изгиба и если нужен небольшой переход между неудобно расположенными друг к другу компонентами СВО, то адаптеры — это хорошее решение.
Системы фазового перехода (фреоновые установки)
Чувствуете, как читая текст, становится все холоднее и холоднее? Еще бы – медленно, но верно спускаемся в диапазон низких температур.
Сейчас мы рассмотрим не очень распространенный, но очень эффективный класс систем охлаждения – системы, хладагентом в которой выступают фреоны. Отсюда и название – фреоновые устанвоки. Но более правильно было бы называть такие системы системами фазового перехода. На принципе действия таких систем работают практически все современные бытовые холодильники.
Но давайте по-порядку. Один из вариантов охладить тело — заставить вскипеть на нем жидкость. Для перехода жидкости в пар, необходимо затратить энергию (энергия фазового перехода) – то есть закипая, жидкость отбирает тепловую энергию от окружающих ее предметов. Но мысленно возвращаясь в стены школьного кабинета физики, мы вспомним, что при текущем давлении мы не сможем нагреть жидкость выше температуры ее кипения. Кто из нас показывали друзьям такой фокус – наливая сок в пластиковый стаканчик и держа под дном стакана пламя? Можете попробовать — никаких катаклизмов не произойдет, пока весь сок не выкипит 😉
Всем известная Википедия трактует слово «Фреоны» как галогеноалканы, фторсодержащие производные насыщенных углеводородов (главным образом метана и этана), используемые как хладагенты. Кроме атомов фтора, в молекулах фреонов содержатся обычно атомы хлора, реже — брома. Известно более 40 различных фреонов; большинство из них выпускается промышленностью. Фреоны — бесцветные газы или жидкости, без запаха.
Если же взять такую жидкость, которая будет закипать, скажем, при -40°С, то сосуд, в котором свободно кипит эта жидкость (такой сосуд называют испарителем), будет очень сложно нагреть. Его температура будет стремиться к -40°С. А поставив такой сосуд на нужный нам объект охлаждения (например, на процессор), мы сможем добиться того, чего и хотели – охладить систему.
Но понятное дело, лазить с определенным интервалом под стол и заливать жидкость в испаритель никто не будет – нужно из пара жидкости опять получить саму жидкость, которая будет снова подаваться в испаритель. Вот Вам пища для самостоятельных размышлений.
Ладно-ладно. В результате размышлений вы должны прийти к схеме следующего вида: мощный компрессор после испарителя качает газ и подает его под большим давлением в конденсор. Там газ конденсируется в жидкость и отдает тепло. Конденсор, выполненный в виде радиатора, рассеивает тепло в атмосферу – этот этап мы уже хорошенько рассмотрели в предыдущих системах. Далее жидкий фреон поступает к испарителю, где выкипая, отбирает тепло – вот и весь замкнутый цикл. Цикл «фазовых переходов» потому так и назван — фреон попеременно меняет свое агрегатное состояние.
Системы фазового перехода, испарители (холодильники) которых устанавливаются непосредственно на охлаждаемые элементы, называются системами «Direct Die». Холодными в такой системе являются только сам испаритель и отсасывающая трубка, остальные же элементы могут иметь комнатную температуру или выше. Холодные элементы нужно тщательно теплоизолировать для предотвращения образования конденсата.
Минусом фреонок является относительная громоздкость испарителя и отсасывающей трубки, поэтому объектом охлаждения выбираются лишь процессор и видеокарта.
Есть и еще одна разновидность систем охлаждения, о которой я пока не упомянул – чиллеры. Этот класс систем состоит в основном из систем жидкостного охлаждения, отличием же является наличие второй части (холодильника теплоносителя), которая работает вместо радиатора – зачастую эта часть является той самой системой фазового перехода. Достоинством такой системой является то, что ей можно охладить все элементы системника, а не только видеокарту и процессор (в отличие от «direct die»-систем). Система фазового перехода чиллера охлаждает лишь теплоноситель системы жидкостного охлаждения, то есть в замкнутом контуре течет очень холодная жидкость. Отсюда и минус систем такого типа – необходимость изолирования ВСЕЙ системы (водоблоки, трубки, насосы и т.п.). Если же изолировать не хочется, то можно использовать маломощную фреоновую установку для чиллера, но тогда об экстремальном разгоне можно будет забыть. Тут уж выбирайте, Вам шашечки или ехать.
Выводы
Системы водяного охлаждения все еще остаются уделом немногих энтузиастов. Однако в свете растущих требований к кулерам топовых графических адаптеров и центральных процессоров у них есть возможность вернуться на массовый рынок.
Эксплуатация СВО связана с определенными трудностями – правильным подбором компонентов, настройкой системы, защитой от случайных протеканий контура. Использование водоблоков вместо традиционных кулеров вызывает необходимость обдува околопроцессорного пространства во избежание перегрева элементов материнских плат и видеокарт. Однако стоят СВО несколько дороже, чем суперкулеры на тепловых трубках.
В то же время сбалансированная система водяного охлаждения способна охлаждать несколько узлов ПК одновременно, и часто делать это намного более эффективно, чем лучшие воздушные кулеры. СВО открывает перед энтузиастами новые горизонты разгона, а обычные пользователи могут существенно снизить уровень шума системного блока.