Заражение компьютера вирусами может произойти в процессе ответ
В заражённых вирусом клетках возможны патологические проявления разностороннего характера.
Характерные проявления взаимодействий между вирусом и чувствительными клетками-видимые поражения заражённых клеток вплоть до их гибели, а также присутствие возбудителей в исследуемом материале.
Альтерация и воспаление зараженных вирусом тканей. При вирусных инфекциях на первый план выступает картина повреждения клеток и воспалительных изменений тканей, при различных инфекциях их соотношение и выраженность варьируют. В противоположность бактериальным инфекциям (где доминируют полиморфноядерные лейкоциты), при вирусных поражениях среди клеточных элементов воспалительных реакций доминируют мононуклеары (лимфо- и моноциты). На этапах, предшествующих разрушению клеток, можно визуально наблюдать их дегенеративные и некротические изменения.
Форма зараженных вирусом клеток. Вследствие поражения цитоскелета клетки принимают округлую форму. Изменения структуры ядра достаточно разнообразны: кариопикноз (сморщивание ядра клетки при дистрофических изменениях в ней (от греч. karion, ядро, + pyknosis, уплотнение)], краевое расположение глыбок хроматина, его распыление и т.д. Подобные поражения способны вызывать адено-, герпес-, парамиксо-, ортомиксо- н ретровирусы. Плазмолемма (ЦПМ). Изменение ее структуры связано с замещением собственных гликопротеинов вирусиндуцированными белками. Эти поражения характерны для инфекций, вызванных оболочечными вирусами, но некоторые «голые» вирусы также могут вызвать изменения клеточной мембраны. Нарушение структуры плазмолеммы может приводить к изменениию некоторых её характеристик (например, к увеличению её проницаемости или слиянию с незаражёнными клетками). В последнем случае можно наблюдать образование симпластов (поли-кариоцитов) и синцитиев. Симпласты представлены гигантскими многоядерными клетками (например, клетки Цапка, выявляемые при герпетических поражениях), образующимися в результате модификации ЦПМ лизосомальными ферментами. Реже наблюдают образование синцитиев— больших конгломератов цитоплазмы, содержащих сотни и тысячи ядер связанных между собой клеток. Образование синцитиев обусловлено модификацией ЦПМ поверхностными гликопротеинами и характерно для парамиксовирусов.
Тельца включений зараженных вирусом клеток. Микроскопия заражённых клеток часто позволяет выявить тельца включений — характерный, но не абсолютный признак вирусных поражений. Тельца значительно крупнее, чем отдельные вирионы, и часто окрашиваются кислыми красителями (например, эозином).
• В одних случаях (например, при натуральной оспе) включения играют роль «вирусных фабрик», где собираются дочерние популяции, в других — служат депо побочных продуктов (например, при герпесвирусных инфекциях).
• При заражении клеток ДНК-содержащими вирусами тельца включений располагаются в ядре; исключение — тельца включений поксвирусов (тельца Гварнери).
• При заражении клеток РНК-содержашими вирусами тельца включений располагаются в цитоплазме (например, тельца Бабеша-Нёгри, выявляемые в цитоплазме клеток головного мозга при бешенстве).
Причины гибели зараженных вирусом клеток. Размножаясь в клетке, вирусы индуцируют синтез вирусспецифических белков, в той или иной степени подавляющих метаболизм клетки. Нарушение синтеза макромолекул вызвано нарушением трансляции клеточной мРНК. Среди РНК-геномных вирусов наиболее быстрое и глубокое подавление макромолекулярных синтезов в клетке вызывают пикорнавирусы, среди ДНК-геномных — покс- и герпесвирусы. Действие указанных вирусов реализуется на ранних этапах (до появления морфологических признаков цитопатического эффекта). Ингибирование синтеза РНК и ДНК обычно вторично по отношению к воздействию на белки, контролирующие экспрессию генов и пролиферацию клетки. Значительно реже нарушения вызывают вирусные белки, напрямую ингибирующие синтез нуклеиновых кислот. Среди РНК-геномных вирусов наиболее быстрое и глубокое подавление синтезов нуклеиновых кислот вызывают пикорнавирусы, среди ДНК-геномных — покс- и герпесвирусы.
Во время репродукции вируса в клетке накапливаются вирусные компоненты, оказывающие токсическое и повреждающее действие на клеточные структуры. Например, цитотоксические свойства проявляют капсомеры некоторых аденовирусов, гликопротеины парамиксовирусов. В процессе вирусной инфекции также происходит повреждение мембран лизосом, содержимое которых высвобождается и осуществляет аутолиз клетки. Таким образом, гибель клеток наступает в результате сочетания раннего подавления синтеза клеточных компонентов, накопления токсических вирусных продуктов и повреждения лизосом.
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.
Заражение компьютера вирусами может произойти в процессе ответ
Первая массовая эпидемия компьютерного вируса произошла в 1986 году, когда вирус Brain «заражал» дискеты для первых массовых персональных компьютеров. В настоящее время известно несколько десятков тысяч вирусов, заражающих компьютеры с различными операционными системами и распространяющихся по компьютерным сетям.
Обязательным свойством компьютерного вируса является способность к размножению (самокопированию) и незаметному для пользователя внедрению в файлы, загрузочные секторы дисков и документы. Название «вирус» по отношению к компьютерным программам пришло из биологии именно по признаку способности к саморазмножению.
После заражения компьютера вирус может активизироваться и заставить компьютер выполнять какие-либо действия. Активизация вируса может быть связана с различными событиями (наступлением определенной даты или дня недели, запуском программы, открытием документа и так далее).
Компьютерные вирусы являются программами, которые могут «размножаться» и скрытно внедрять свои копии в файлы, загрузочные секторы дисков и документы. Активизация компьютерного вируса может вызывать уничтожение программ и данных.
- неопасные, влияние которых ограничивается уменьшением свободной памяти на диске, графическими, звуковыми и другими внешними эффектами;
- опасные, которые могут привести к сбоям и зависаниям при работе компьютера;
- очень опасные, активизация которых может привести к потере программ и данных (изменению или удалению файлов и каталогов), форматированию винчестера и так далее.
По «среде обитания» вирусы можно разделить на файловые, загрузочные, макровирусы и сетевые.
Файловые вирусы. Файловые вирусы различными способами внедряются в исполнимые файлы (программы) и обычно активизируются при их запуске. После запуска зараженной программы вирус находится в оперативной памяти компьютера и является активным (то есть может заражать другие файлы) вплоть до момента выключения компьютера или перезагрузки операционной системы.
При этом файловые вирусы не могут заразить файлы данных (например, файлы, содержащие изображение или звук).
Профилактическая защита от файловых вирусов состоит в том, что не рекомендуется запускать на выполнение файлы, полученные из сомнительного источника и предварительно не проверенные антивирусными программами.
Загрузочные вирусы. Загрузочные вирусы записывают себя в загрузочный сектор диска. При загрузке операционной системы с зараженного диска вирусы внедряются в оперативную память компьютера. В дальнейшем загрузочный вирус ведет себя так же, как файловый, то есть может заражать файлы при обращении к ним компьютера.
Профилактическая защита от таких вирусов состоит в отказе от загрузки операционной системы с гибких дисков и установке в BIOS вашего компьютера защиты загрузочного сектора от изменений.
Макровирусы. Макровирусы заражают файлы документов Word и электронных таблиц Excel. Макровирусы являются фактически макрокомандами (макросами), которые встраиваются в документ.
После загрузки зараженного документа в приложение макровирусы постоянно присутствуют в памяти компьютера и могут заражать другие документы. Угроза заражения прекращается только после закрытия приложения.
Профилактическая защита от макровирусов состоит в предотвращении запуска вируса. При открытии документа в приложениях Word и Excel сообщается о присутствии в них макросов (потенциальных вирусов) и предлагается запретить их загрузку. Выбор запрета на загрузку макросов надежно защитит ваш компьютер от заражения макровирусами, однако отключит и полезные макросы, содержащиеся в документе.
Сетевые вирусы. По компьютерной сети могут распространяться и заражать компьютеры любые обычные вирусы. Это может происходить, например, при получении зараженных файлов с серверов файловых архивов. Однако существуют и специфические сетевые вирусы, которые используют для своего распространения электронную почту и Всемирную паутину.
Интернет-черви (worm) — это вирусы, которые распространяются в компьютерной сети во вложенных в почтовое сообщение файлах. Автоматическая активизация червя и заражение компьютера могут произойти при обычном просмотре сообщения. Опасность таких вирусов состоит в том, что они по определенным датам активизируются и уничтожают файлы на дисках зараженного компьютера.
Кроме того, интернет-черви часто являются троянами, выполняя роль «троянского коня», внедренного в операционную систему. Такие вирусы «похищают» идентификатор и пароль пользователя для доступа в Интернет и передают их на определенный почтовый адрес. В результате злоумышленники получают возможность доступа в Интернет за деньги ничего не подозревающих пользователей.
Лавинообразная цепная реакция распространения вируса базируется на том, что вирус после заражения компьютера начинает рассылать себя по всем адресам электронной почты, которые имеются в адресной книге пользователя. Кроме того, может происходить заражение и по локальной сети, так как червь перебирает все локальные диски и сетевые диски с правом доступа и копируется туда под случайным именем.
Профилактическая защита от интернет-червей состоит в том, что не рекомендуется открывать вложенные в почтовые сообщения файлы, полученные из сомнительных источников.
Особой разновидностью вирусов являются активные элементы (программы) на языках JavaScript или VBScript, которые могут выполнять разрушительные действия, то есть являться вирусами (скрипт-вирусами). Такие программы передаются по Всемирной паутине в процессе загрузки Web-страниц с серверов Интернета в браузер локального компьютера.
Профилактическая защита от скрипт-вирусов состоит в том, что в браузере можно запретить получение активных элементов на локальный компьютер.
1. К каким последствиям может привести заражение компьютерными вирусами?
2. Какие типы компьютерных вирусов существуют, чем они отличаются друг от друга и какова должна быть профилактика заражения?
3. Почему даже чистая отформатированная дискета может стать источником заражения вирусом?
Задания части 2 ЕГЭ по теме «Вирусы»
1) Вирусы – это паразиты, они могут жить и размножаться только в живых клетках.
2) Вирусы – это неклеточная форма жизни. Вирусные частицы (вирионы) – это не клетки: они на порядок меньше клеток и гораздо проще по строению.
3) Вирусы содержат либо ДНК, либо РНК, но не обе молекулы одновременно.
2. Как размножаются вирусы?
1) Для размножения вирусам необходима живая клетка.
2) Проникнув в клетку, вирус предоставляет ей свою нуклеиновую кислоту (наследственную информацию).
3) Клетка сама синтезирует вирусные белки и размножает вирусные нуклеиновые кислоты.
4) Происходит самосборка вирусных частиц и их выход из клетки.
3. На основании чего вирусы относят к живым организмам?
Вирусы представляют собой простейшую форму жизни на Земле и занимают пограничное положение между неживой и живой материей. Так как вирусы обладают наследственностью и изменчивостью, а также способностью к размножению, их можно отнести к живым организмам. Кроме того, в состав вируса входят нуклеиновые кислоты и белки, свойственные именно живым организмам.
4. Какова роль вирусов в природе?
А) Вызывают инфекционные заболевания (грипп, герпес, СПИД и т.д.).
Б) Некоторые вирусы могут встраивать свою ДНК в хромосомы клетки-хозяина, вызывая мутации.
В) Вирусы могут переносить ДНК между разными видами.
5. Объясните, почему вирусы неспособны к собственному обмену веществ и размножаются только внутри клетки.
1) у вирусов отсутствуют необходимые ферменты и органоиды (рибосомы), обеспечивающие обмен веществ (синтез собственных белков);
2) отсутствие собственных ферментов делает невозможным процесс репликации, что не позволяет вирусам размножаться вне клетки
6. Найдите три ошибки в приведённом тексте «Вирусы». Укажите номера предложений, в которых сделаны ошибки, исправьте их. Дайте правильную формулировку. (1) Вирусы – внутриклеточные паразиты, они проявляют активность только в клетках хозяина. (2) Вирусы относят к прокариотам. (3) Все вирусные частицы состоят из молекулы ДНК и целлюлозной оболочки. (4) Вирусы обладают всеми признаками живого: наследственностью, обменом веществ, раздражимостью и другими. (5) Нуклеиновые кислоты вируса синтезируются из нуклеотидов хозяина. (6) Вирусы – возбудители многих опасных заболеваний: гриппа, гепатита и др. (7) Они могут переносить гены между клетками одного организма, между организмами как одного, так и разных видов или даже классов.
2 — Вирусы относят к империи вирусов (к группе неклеточных организмов).
3 — Вирусные частицы могут содержать ДНК или РНК, вирусные частицы не имеют целлюлозной оболочки.
4 — Вирусы обладают наследственностью и обменом веществ только внутри живой клетки. Вирусы не обладают раздражимостью.
7. Назовите объект, изображенный на рисунке. Укажите названия и функции структур, изображенных на рисунке цифрами 1, 2, 3.
1) Изображен бактериофаг (вирус) — неклеточная форма жизни.
2) 1 – головка, покрытая капсидом (белковой капсулой), внутри находится нуклеиновая кислота.
3) 2 – белковый чехол хвоста, через него нуклеиновая кислота впрыскивается в бактерию
4) 3 – хвостовые нити (фибриллы), они удерживают бактериофаг на бактерии
8. Что изображено на картинке? По каким признакам вы можете проклассифицировать данный объект? Как его применяют в медицине?
1) Бактериофаг (вирус бактерий).
2) Не имеет клеточного строения. Состоит только из нуклеиновой кислоты и белковой оболочки (капсида). Может содержать ДНК или РНК, но не может содержать их обеих.
3) Бактериофаги можно использовать для лечения бактериальных заболеваний.
9. Найдите три ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны, исправьте их. (1) Вирусы — внутриклеточные паразиты. (2) Генетический аппарат всех вирусов представлен молекулой ДНК. (3) Они синтезируют свои нуклеиновые кислоты и белки из соответствующих мономеров клетки хозяина. (4) Вирусы относят к прокариотам. (5) Оболочка вируса образована комплексом полисахаридов. (6) Вирусы — возбудители многих опасных заболеваний: бешенства, гепатита и др. (7) Вирусы паразитируют в клетках растений, животных, человека. (8) Особая группа вирусов — бактериофаги — поражает клетки бактерий.
2 — генетический аппарат вируса может быть представлен молекулами РНК или ДНК;
4 — вирусы — это неклеточная форма жизни;
5 — оболочка вируса образована белками (иногда липидами и белками)
Регулярное обновление сигнатурных баз
Антивирусы и программы анти-шпионы требуют регулярного обновления сигнатурных баз и баз данных. Без этих обновлений антивирусные программы не в состоянии защитить компьютер от последних угроз.
В начале 2009 года специалисты лаборатории AVG провели исследование и выявили, что серьёзные угрозы скрыты и стремительны. Многие инфекции недолго существуют в сети, но они успевают заражать примерно от 100 000 до 300 000 вебсайтов в день.
Пользователи компьютеров должны хранить их антивирусные и антишпионские программы с своевременно обновляемыми базами. Также надо отслеживать время истечение лицензии, чтобы обеспечить защиту против недавно появившихся угроз. Так как эти угрозы распространяются очень быстро в сети.
Компьютерные вирусы и защита от них
Не все вредоносные программы называются вирусами, а только те, которые, подобно биологическому вирусу, самовоспроизводятся, т. е. без участия владельца компьютера рассылают свои копии по почте, со страниц соцсетей, по внутренней локальной сети. И поражают файлы на компьютере владельца.
Вирус — самовоспроизводящийся программный код, способный самопроизвольно присоединяться к файлам — заражать их, создавать свои копии, внедрять их в системные области персонального компьютера и в другие объединённые с ним компьютеры с целью нарушения нормальной работы программ, порчи файлов и папок, создания сбоев в работе компьютера.
Появившийся на компьютере вирус может «расположиться» в исполняемом файле (.exe или .com) и размножаться при каждом запуске файла, занимая таким образом всё больше и больше места. Другая «среда обитания» вирусов — сектора загрузки или компьютерные сети. Могут внедряться вирусы и в файлы прикладных программ — это макровирусы.
По способу действия вирус может вредить оперативной памяти — резидентный или нерезидентный (активный только во время выполнения каких-то определённых задач).
По степени влияния на работу компьютера вирусы можно разделить на безопасные, опасные и очень опасные. Но не стоит их бояться. В современном мире вирусы долго не живут.
Антивирусные базы обновляются ежедневно, и на всякое действие вируса вскоре находится противодействие.
Самые разрушительные вирусы вызывают форматирование некоторых системных секторов жёсткого диска. Данные при этом не теряются, но воспользоваться ими без специальных средств нельзя. Теоретически восстановить такие повреждения можно, но это занимает много времени, и порой затрачивается больше временных и человеческих ресурсов, чем вся стоимость утраченных файлов. Поэтому рекомендуется воспользоваться «правилом (3) — (2) — (1)», которое гласит, что для важных файлов должно быть не менее (3) копий на (2) разных носителях, и как минимум одна из этих копий должна храниться на удалении от рабочего компьютера, например в облачном хранилище.
Естественно, нельзя пренебрегать требованием антивирусной программы обновить вирусные базы. Часто это делается автоматически, так как устаревшая база не защищает компьютер. Антивирусная программа-монитор постоянно находится в оперативной памяти компьютера и следит за всеми операциями с файлами. Она позволяет обнаружить и удалить вирус до того, как он начнёт действовать. Антивирусная программа-сканер осуществляет проверку компьютера по требованию пользователя и может проверять только указанную область памяти, например чужой носитель: флешку или внешний диск.
Основным действием, предотвращающим заражение компьютера вирусом, является соблюдение правил кибергигиены:
1. регулярное резервное копирование. Пользуемся «правилом (3) — (2) — (1)».
2. Использование легальных программных продуктов, купленных у официальных продавцов или легально распространяемых демонстрационных версий.
3. Проверка внешних носителей перед использованием и файлов перед скачиванием.
4. Обновление антивирусных программ.
5. Ограничение круга лиц, использующих один и тот же компьютер.
Заражение компьютера вирусами может произойти в процессе ответ
Взаимоотношения иммунитета и инфекции определяют развитие очень многих заболеваний. В полной мере сила и «разумность» инфекции проявляются в примере динамического противостояния живых систем — вирусной инфекции и иммунитета. Если вирус «спрятался» в клетках организма человека и заблокировал их апоптоз, то найти такую инфекцию и избавить организм от нее иммунная система может с помощью Т-клеток -киллеров. Они обнаруживают небольшие фрагменты вирусных белков, встроенных на поверхность инфицированной клетки. Задача Т-киллеров — выявить все инфицированные клетки и убить их путем апоптоза, чтобы не навредить соседним неинфицированным клеткам. Так и происходит в большинстве случаев, но когда Т-клетки-киллеры не обнаруживают признаков инфекции на поверхности инфицированных клеток и превращаются в бесполезное оружие иммунитета, на помощь приходят NK-клетки, имеющие точно такой же аппарат убийства других клеток, как и Т-киллеры. Такой иммунный контроль вирусной инфекции высокоэффективен.
Экспрессия генов ДНК-содержащих вирусов происходит в соответствии с центральной догмой молекулярной биологии: «ДНК — мРНК — белок». В процессе транскрипции участвуют вирусные и клеточные ферменты, как правило, неструктурные белки. По локализации ДНК-вирусы разделяются на ядерные (герпесвирусы, аденовирусы, паповавирусы) и цитоплазматические (вирус оспы). У некоторых из ядерных ДНК-вирусов (паповавирусы, герпесвирусы) возможна интеграция генома в клеточные хромосомы. У крупных ДНК-вирусов сначала синтезируется полицистронная РНК, которая затем нарезается и процессируется. У цитоплазматических ДНК-вирусов транскрипция осуществляется вирусными РНК-полимеразами.
У РНК-содержащих ретровирусов сначала происходит обратная транскрипция генома в ДНК, затем ее интеграция в клеточные хромосомы и лишь после этого транскрипция генов.
Цитопатические эффекты при вирусных инфекциях разнообразны, они определяются как вирусом, так и клеткой и сводятся к разрушению клетки (цитолитический эффект), сосуществованию вируса и клетки без гибели последней (латентная и персистирующая инфекция) и трансформации клетки.
Вовлеченность организма в инфекционный процесс зависит от ряда обстоятельств — количества погибших клеток, токсичности вирусов и продуктов распада клеток, от реакций организма, начиная от рефлекторных и заканчивая иммунными. Количество погибших клеток влияет на тяжесть инфекционного процесса. Например, будут ли поражены при гриппе только клетки носа и трахеи или вирус поразит клетки эпителия альвеол, зависит тяжесть и исход болезни.
Хотя вирусы и не образуют типичных токсинов, однако и вирионы, и вирусные компоненты, накапливающиеся в пораженных тканях, выходя в кровоток, оказывают токсическое действие. Неменьшее токсическое действие оказывают и продукты распада клеток. В этом случае действие вирусной инфекции столь же неспецифично, как и действие патогенных организмов, убивающих клетки и вызывающих их аутолиз. Поступление токсинов в кровь вызывает ответную реакцию — лихорадку, воспаление, иммунный ответ. Лихорадка является преимущественно рефлекторным ответом на поступление в кровь и воздействие на ЦНС токсичных веществ.
Если лихорадка — общий ответ организма на вирусную инфекцию, то воспаление — это местная многокомпонентная реакция. При воспалении происходят инфильтрация пораженных тканей макрофагами, утилизация продуктов распада, репарация и регенерация. Одновременно развиваются реакции клеточного и гуморального иммунитета. На ранних стадиях инфекции действуют неспецифические киллеры и антитела класса IgM. Затем вступают в действие основные факторы гуморального и клеточного иммунитета. Однако гораздо раньше, уже в первые часы после заражения, начинает действовать система интерферона, представляющая семейство секреторных белков, вырабатываемых клетками организма в ответ на вирусы и другие стимулы. Описанные явления относятся к так называемой острой репродуктивной вирусной инфекции. Взаимодействие вируса и клеток может происходить, как отмечалось выше, без гибели последних. В этом случае говорят о латентной, т.е. бессимптомной или персистирующей хронической вирусной инфекции. Дальнейшая экспрессия вируса, образование вирусспецифических белков и вирионов вызывает синтез антител, на этой стадии латентная инфекция переходит в персистирующую и появляются первые признаки болезни.
Репродукция вируса в клетках сопровождается развитием цитопатических процессов, специфичных для разных вирусов и для разных типов инфекционных процессов. Цитопатические процессы при вирусных инфекциях разнообразны, они определяются как вирусом, так и клетками, причем специфика их больше «задается» клеткой, нежели вирусом, и сводится в основном к разрушению клеток, сосуществованию вируса и клеток без гибели последних и трансформация клеток. Несмотря на значительные различия цитоцидного действия разных вирусов, в общем, они сходны. Подавление синтеза клеточных макромолекул — нуклеиновых кислот и белков, а также истощение энергетических ресурсов клетки ведут к необратимым процессам, заканчивающимся гибелью пораженной клетки. Повреждение клеток вирусами, их отмирание и распад переносят вирусную инфекцию с клеточного уровня на уровень организма в целом.
При встрече организма с вирусной инфекцией продукция интерферона (растворимого фактора, вырабатываемого вирус-инфицированными клетками, способного индуцировать антивирусный статус в неинфицированных клетках) становится наиболее быстрой реакцией на заражение, формируя защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, — делая клетки непригодными для размножения вирусов.
Продукция и секреция цитокинов относятся к самым ранним событиям, сопутствующим взаимодействию микроорганизмов с макрофагами. Этот ранний неспецифический ответ на инфекцию важен по нескольким причинам: он развивается очень быстро, поскольку не связан с необходимостью накопления клона клеток, отвечающих на конкретный антиген; ранний цитокиновый ответ влияет на последующий специфический иммунный ответ.
Интерферон активирует макрофаги, которые затем синтезируют интерферон-гамма, ИЛ-1, 2, 4, 6, ФНО, в результате макрофаги приобретают способность лизировать вирус-инфицированные клетки.
Интерферон-гамма является специализированным индуктором активации макрофагов, который способен индуцировать экспрессию более 100 разных генов в геноме макрофага.
Продуцентами этой молекулы являются активированные Т-лимфоциты (Тh1-тип) и естественные киллеры (NK-клетки). Интерферон-гамма индуцирует и стимулирует продукцию провоспалительных цитокинов (ФНО, ИЛ-1, 6), экспрессию на мембранах макрофагов, антигенов МНС II; гамма-интерферон резко усиливает антимикробную и противовоспалительную активность путем повышения продукции клетками супероксидных радикалов, а усиление иммунного фагоцитоза и антителоопосредованной цитотоксичности макрофагов под влиянием гамма-интерферона связано с усилением экспрессии Fc-рецепторов для JgG. Активирующее действие интерферона-гамма на макрофаги опосредовано индукцией секреции этими клетками ФНО -альфа. Этот пик наблюдается совместно с ФНО-альфа. Максимум продукции ИЛ-4 наступает через 24-48 ч с момента активации клеток. При этом ИЛ-4 рассматривается как цитокин, ограничивающий иммуновоспалительные реакции и снижающий ответ организма на инфекцию, угнетая при этом экспрессию гамма-интерферона. Интерферон-гамма ин витро усиливает фагоцитарную активность нейтрофилов, что обусловлено усилением экспрессии Fc-рецепторов и поверхностных белков семейства интегринов на нейтрофилы. Это позволяет нейтрофилам осуществлять цитотоксические функции и фагоцитоз. В качестве основных эффекторных клеток воспалительного процесса, они обеспечивают элиминацию инфекта из организма.
Взаимодействие цитокина с клеткой определяется универсальной биологической системой, специфическим механизмом которой является рецепторный аппарат, связанный с восприятием метаболического кода. Для проявления биологической активности цитокина необходимо присутствие на поверхности чувствительных клеток специфических рецепторов, которые могут экспрессироваться параллельно с синтезом цитокина. Рецепторы цитокинов представляют собой комплексы, состоящие из двух и более рецепторных молекул, которые объединяются на мембране клетки-мишени и образуют высокоаффинный рецепторный комплекс. Большинство рецепторов состоит из отдельных молекул, связывающих цитокины, которые ассоциируются после связывания лиганда с сигналпередающим рецепторным компонентом; часть рецепторов существует как растворимые изоформы, способные связывать и растворять цитокины, а часть функционирует как многокомпонентные блоки; механизм комплексирования субъединиц рецепторов объясняет плейотропные и дублирующие эффекты цитокинов, имеющих большое структурное сходство. Рецепторы ИЛ-10 имеют гомологию рецепторов интерферона, и подобно ИЛ-10 индуцирует экспрессию в моноцитах гена Fc- рецептора. Для полного функционирования цитокиновой системы необходимы повышение уровня цитокина в ответ на инфект и экспрессия нормального количества рецепторов к ним на клетках. Изменение рецепторов после их связывания с цитокином заключается в интернализации комплексов цитокин — рецептор внутрь клетки. На поверхности клеток рецептор появляется заново, постепенно синтезируясь в течение 24-36 ч (время появления рецепторов интерферон-альфа). В этот период клетки остаются чувствительными к последующим дозам цитокина, чем объясняется эффективность введения препаратов интерферона и их индукторов три раза в неделю.
Пик продукции цитокинов после стимуляции макрофагов наблюдается через 1-2,6,18-48 ч, а пик продукции интерферон-гамма наступает через 20 ч после первого выхода цитокина из клетки. Поскольку интерферон-гамма ингибирует миелопоэз, то нормализация числа нейтрофилов после элиминации инфекта связана с системой регуляции нейтропоэза. Через 6 ч после стимуляции интерферон-альфа для выполнения своих функций NK-rклетки (активность которых регулируется ИЛ-1, 4, 2) продуцируют гамма-интерферон, в результате чего происходит лизис инфицированных клеток.
При антигенной стимуляции клеток трансдукция сигнала с активированного рецептора на генетический аппарат осуществляется с помощью внутриклеточных регуляторных систем, компоненты которых (белки мембран, ферментов, хроматина) связываются с чувствительными к ним последовательностями ДНК. После связывания цитокина (интерферон) с поверхностными клеточными мембранными рецепторами происходит активация ферментов протеинкиназы-С (ПКС), тирозинкиназы, ц-АМФзависимой протеинкиназы, серин-треонинкиназы. Интерферон-альфа активирует tyk 2 и jak 1-киназы, а интерферон-гамма активирует jak 1 и 2-киназы. Далее факторы транскрипции перемещаются в ядро клетки и связывают гены раннего ответа.
Первый ответ клеток на цитокин — это быстрая индукция генов раннего ответа («immediate early» генов), в число которых и входит ген интерферон-гамма. Стимуляция экспрессии этих генов важна для выхода клеток из Go-стадии и перехода в Gi-стадию и дальнейшей прогрессии клеточного цикла. Их индукция происходит после активации рецепторов роста на клеточной мембране и активации протеин-киназной системы. Гены раннего ответа являются ключевыми регуляторами клеточной пролиферации и дифференцировки, кодируют белки, регулирующие репликацию ДНК.
Таким образом, при активации клеток происходит стимуляция генов раннего ответа, что ассоциируется с изменением фаз клеточного цикла. Основная протективная роль в иммунном ответе, направленном против внутриклеточных паразитов (грибы, простейшие, вирусы, микобактерии туберкулеза), принадлежит клеточным механизмам. Способность перечисленных возбудителей переживать и размножаться внутри клеток делает их защищенными от действия антител и системы комплемента. Резистентность к антимикробным факторам макрофагов позволяет им длительно переживать внутри этих клеток. Для элиминации возбудителя необходим специфический клеточно-опосредованный ответ. Его специфичность определяется антигенраспознающими СД8+-Т-лимфоцитами, которые пролиферируют, активируются и формируют клон эффекторных цитотоксических лимфоцитов. Решающий момент специфического иммунного ответа — это ответ СД4+Т-лимфоцитов с хелперной направленностью на распознавание антигена. На этом этапе определяется форма иммунного ответа: либо с преобладанием гуморального иммунитета, либо с преобладанием клеточных реакций (ГЗТ). Направление дифференцировки СД4 + -лимфоцитов, от которого зависит форма специфического иммунного ответа, контролируется цитокинами, образующимися в ходе воспалительной реакции. Так, в присутствии ИЛ-12 и интерферон-гамма СД4 + -лимфоциты дифференцируются в воспалительные Тh1-клетки, начинают продуцировать и секретировать интерлейкин-2, интерферон-гамма, ФНО и определяют клеточный характер специфического иммунного ответа. Присутствие ИЛ-12 обеспечивается его продукцией макрофагами, а интерферон-гамма — естественными киллерами, активированными в раннюю фазу ответа на внутриклеточно паразитирующие бактерии и вирусы. В отличие от этого, в присутствии ИЛ-4 СД4 + -лимфоциты дифференцируются в хелперы Тh 2, которые начинают продуцировать и секретировать ИЛ-4, ИЛ-5, ИЛ-6 и запускают гуморальный иммунный ответ, т.е. синтез специфических антител — иммуноглобулинов. Воспалительные Тh 1-лимфоциты нужны для борьбы с внутриклеточными паразитами, а Тh 2 хелперы нужны для элективной защиты от внеклеточных паразитов.
Вирусная инфекция может вызывать быстрое подавление экспрессии ряда клеточных генов (из которых наиболее изучены интерфероновые гены и гены, кодирующие дс-РНК-зависимые ферменты -2,5-ОАС и ПК-дс), принимающих участие в антивирусном действии. Специальные исследования механизма антивирусного действия интерферонов и дс-РНК в клеточных и бесклеточных системах показали ключевую роль в этом процессе вышеуказанных ферментов. ПК-дс, взаимодействуя с дс-РНК, фосфорилируется и в активной форме фосфорилирует регуляторные факторы транскрипции и трансляции, из которых наиболее изучен инициирующий фактор трансляции (eIF2).
ПК-дс выполняет регуляторную роль в системе клеточной пролиферации на уровне факторов трансляции и активации ряда генов цитокинов. Вероятно, существует связь между подавлением транскрипции мРНК и ПК-дс, угнетением общего синтеза клеточного белка при вирусных инфекциях и накоплением в ядрах клеток белка нуклеокапсида и белка NSP2. Фрагментация клеточных хромосом, наблюдающаяся на ранних сроках вирусной инфекции, может быть одной из причин подавления экспрессии генов, участвующих в противовирусном ответе.
Есть основания предполагать участие белков NSP2 в регуляции активности генов цитокинов — низкомолекулярных белковых регуляторных веществ, продуцируемых клетками и способных модулировать их функциональную активность. Нарушения в системе цитокинов приводят к нарушению кооперативных взаимодействий иммунокомпетентных клеток и нарушению иммунного гомеостаза.
В последние годы показано, что ИЛ- 12, относящийся к провоспалительным цитокинам, является ключевым для усиления клеточно-опосредованного иммунного ответа и инициации эффективной защиты против вирусов.
Средства терапии гриппа и ОРЗ можно разделить на этиотропные, иммунокорригирующие, патогенетические и симптоматические. Приоритет принадлежит этиотропным препаратам, действие которых направлено непосредственно на возбудитель инфекции. Все препараты этиотропного действия целесообразно рассматривать с учетом их точек приложения в цикле репродукции вирусов гриппа и других ОРЗ.
Применение химиопрепаратов для профилактики и лечения гриппа и ОРЗ относится к базовой терапии и является общепризнанным мировым стандартом. Многолетние клинические исследования достоверно выявили их высокую лечебно-профилактическую значимость. Химиотерапевтические средства представлены тремя основными группами: это блокаторы М2-каналов (амантадин, ремантадин); ингибиторы нейраминидазы (занамивир, озельтамивир) и ингибиторы протеаз (амбен, аминокапроновая кислота, трасилол). Препараты оказывают прямое антивирусное действие, нарушая различные фазы репликативного цикла вирусов. Несколько особняком стоит группа вирулицидных препаратов, применяемых местно для предотвращения адсорбции и проникновения вирионов в клетки.