Устройства хранения информации
Примеры носителей: глиняная табличка, бумага, человеческая ДНК, $USB-Flash$ память.
Рассмотрим устройства хранения информации, называемые также запоминающими устройствами (ЗУ).
К основным параметрам запоминающих устройств относятся:
- информационная ёмкость (бит);
- потребляемая мощность;
- время хранения информации;
- быстродействие.
ЗУ делятся на внешние и внутренние устройства.
Зачем вам использовать внешний диск?
Внешние накопители портативны, просты в использовании и могут обеспечить большой объем памяти в любое время. Можно хранить собственное устройство в любом месте и иметь при себе большое количество файлов, куда бы вы ни отправились.
Еще одним преимуществом владения внешним диском считается портативность. Можете перемещать его с компьютера на компьютер, что делает их удобными для обмена большими файлами.
Из-за своей большой емкости (часто в терабайтах) внешние HDD часто используются для хранения резервных копий файлов. Используется программа резервного копирования для сохранения таких вещей, как музыка, видео или коллекция изображений, на внешний диск для безопасного хранения, отдельно от оригиналов на случай, если они были случайно изменены или удалены.
Если внешние жесткие диски не используются для резервного копирования, это способ расширить существующее хранилище без необходимости открывать компьютер, что не удобно при использовании ноутбука.
Простая флешка с дизайном HDD
Если ваш компьютер выдает предупреждения о нехватке места на диске или работает медленно, то пришло время приобрести внешний HDD, чтобы вы могли скопировать часть своих файлов на него и освободить память на основном жестком диске.
Его можно использовать для предоставления дополнительного хранилища всей сети (хотя внутренние жесткие диски более распространены для этих целей). К таким типам сетевых устройств хранения данных могут обращаться сразу несколько пользователей, и они часто служат способом обмена файлами внутри сети, чтобы избежать отправки по электронной почте или загрузки данных в Интернете.
USB-флешки
К разновидностью флешек можно отнести карты памяти, которые с картриддером являются полноценной USB-флешкой. Удобство использование такого тандема позволяет хранить значительные объемы информации на различных картах памяти, которые будет занимать минимум места. К тому же вы всегда можете прочитать карту памяти вашего смартфона, фотоаппарата.
Флешки удобно использовать в повседневной жизни – переносить документы, сохранять и копировать различные файлы, просматривать видео и прослушивать музыку.
Роль оперативной памяти в общем «оркестре» компонентов компьютера
Работу компьютера следует рассматривать как «оркестр». «Музыкантами» в нем являются все его программные и аппаратные составляющие, в том числе центральный процессор, жесткий диск и операционная система, выполняющая, как известно нашим читателям, пять важнейших невидимых задач. Оперативная память, которую нередко называют просто «памятью» находится в числе наиболее важных компонентов компьютера. С того момента как вы включили компьютер и до того мгновения, когда вы его отключите, процессор будет непрерывно обращаться к памяти. Давайте рассмотрим типичный сценарий работы любого компьютера.
Вы включили компьютер. Он, в свою очередь, загрузил данные из постоянной памяти (ROM) и начал самотестирование при включении (power-on self-test, POST). Компьютер проверяет сам себя и определяет, исправен ли он и готов ли к новому трудовому сеансу. Целью этого этапа работы является проверка того, что все основные компоненты системы работают корректно. В ходе самотестирования контроллер памяти посредством быстрой операции чтения/записи проверяет все ячейки памяти на наличие или отсутствие ошибок. Процесс проверки выглядит так: бит информации записывается в память по определенному адресу, а затем считывается оттуда.
Компьютер загружает из ПЗУ базовую систему ввода-вывода, более известную по английской аббревиатуре BIOS. В этом «биосе» содержится базовая информация о накопителях, порядке загрузки, безопасности, автоматическом распознавании устройств (Plug and Play) и некоторые иные сведения.
Затем наступает черед загрузки операционной системы. Она загружается в оперативную память компьютера с жесткого диска (чаще всего в современном компьютере всё обстоит именно так, но возможны и иные сценарии). Важные компоненты операционной системы обычно находятся в оперативной памяти компьютера на протяжении всего времени работы с ним. Это дает центральному процессору возможность немедленного доступа к операционной системе, что повышает производительность и функциональность всего компьютера в целом.
Когда вы открываете приложение, оно записывается всё в ту же оперативную память. Объем памяти этого типа в наши дни хоть и велик, но при этом все равно значительно уступает ёмкости жесткого диска. В целях экономии оперативной памяти некоторые приложения записывают в нее только свои важнейшие компоненты, а остальные «подгружают» с жесткого диска по мере необходимости. Каждый файл, который загружается работающим приложением, тоже записывается в оперативную память.
Что происходит, когда вы сохраняете файл и закрываете приложение? Файл записывается на жесткий диск, а приложение «выталкивается» из оперативной памяти. То есть и само приложение, и связанные с ним файлы удаляются из оперативной памяти. Тем самым освобождается место для новой информации: других приложений и файлов. Если измененный файл не был сохранен перед удалением из временного хранилища, все изменения будут потеряны.
Из вышесказанного следует, что каждый раз, когда что-то загружается или открывается, оно помещается в оперативную память, то есть во временное хранилище данных. Центральному процессору проще получить доступ к информации из этого хранилища. Процессор запрашивает из оперативной памяти необходимые ему в процессе вычислений данные.
Всё это звучит несколько суховато и не дает полного представления о масштабах событий. Но поистине впечатляюще выглядит то, что в современных компьютерах обмен информацией между центральным процессором и оперативной памятью совершается миллионы раз в секунду.
Но запоминающие устройства не исчерпываются одной только оперативной памятью. Теперь, когда мы знаем, какое место занимает каждый тип памяти в общей картине современного цифрового устройства, нам осталось рассмотреть и другие разновидности хранилищ информации. И поэтому…
Телефон пишет, что не хватает места для новых фото. Пора менять?
Чаще всего достаточно поудалять старые видео, даже не фото. Одна фотография занимает не так много места, как минута видео, поэтому если нужно освободить память — удаляйте видео.
Если у вас Айфон, он автоматически заботится о том, чтобы чистить память: он в фоновом режиме отгружает ваши старые фото и видео в «облако». Когда они нужны, он их сам оттуда загрузит. Но «облако» тоже не резиновое, поэтому чистите память.
Магнитно-оптические диски
Магнитно-оптический диск — носитель информации, сочетающий свойства оптических и магнитных накопителей.В последнее время все более широкое признание получает магнитооптическая технология, которая использует магнитные и оптические механизмы записи и чтения; все чаще магнитооптические накопители используются для хранения больших объемов информации.На сегодняшний день благодаря применению новых технических решений и последних технологий в магнитооптических системах ситуация с магнитооптическими накопителями полностью изменилась. Постоянное снижение цен на магнитооптические дисководы и улучшение технических характеристик позволит им в недалеком будущем полностью вытеснить с рынка стримеры, а постоянное увеличение емкости носителей и надежности хранения информации делает их работу в сетевых системах более эффективной по сравнению с накопителями типа CD-ROM.Запись на диск выполняется посредством последовательного нагревания ячейки диска лазером большой интенсивности до t=200 Со, в результате чего ячейка теряет заряд и последующего нанесения нового заряда при этой же температуре магнитной головкой. Считывание производится лазерным лучом меньшей интенсивности. Он направляется на ячейку и поляризуется имеющимся там зарядом (если таковой имеется), а считывающее устройство определяет является ли отраженный луч поляризованным.Не все магнитооптические диски могут быть перезаписываемыми; существуют также диски с однократной записью CC WORM (Continuons Composite Write Once Read Many) и частичной записью P-ROM (Partial read-only memory).Несмотря на большую емкость магнитооптических дисков , они не могут заменить жесткие диски. Прежде всего это связано с низким быстродействием магнитооптических дисководов, а ведь этот параметр является одним из основных показателей для жестких дисков. Быстродействие магнитооптических дисководов существенно снижается при записи диска; не спасает положение и технология кэширования записи. Как известно, запись на магнитооптический диск осуществляется за два прохода: при первом проходе данные стираются с диска, при втором — записываются. А если к тому же установить проверку данных при записи, то быстродействие снизится еще на 20-30%.
Если вам требуется средство для долговременного хранения данных, использование магнитных носителей, чувствительных к сотрясениям, магнитным и электрическим полям, — не слишком надежное решение. В этом случае стоит присмотреться к оптическим накопителям. Дисководы CD-R, к примеру, предполагают использование наиболее универсальных носителей, а также самую низкую цену хранения одного мегабайта информации. Однако использование технологии однократной записи не позволяет стирать ненужные данные и записывать новые. Кроме того, для записи на диски CD-ROM требуются значительные системные ресурсы, что делает такой подход не всегда приемлемым. Кроме дисководов CD-R есть еще один тип надежных устройств хранения информации — это магнитооптические устройства. Хотя случайный магнитный импульс может мгновенно уничтожить данные, записанные на гибких или жестких дисках, это не составит проблемы при использовании оптических накопителей, в которых вместо намагничивания при записи и считывании применяются лазерные лучи. Как следствие, они более эффективны для долговременного хранения данных или безопасной пересылки больших файлов по почте. Большая часть перезаписываемых оптических дисков может храниться 30 лет или даже больше, в то время как магнитные носители рассчитаны не более чем на 5 лет службы. Дополнительным преимуществом при архивации служит более низкая по сравнению с накопителями Zip или съемными жесткими дисками стоимость одного мегабайта записи, которая составляет всего около 11 центов для дисков на 230 Мбайт
Такие диски лучше переносят удары. Падение с метровой высоты на бетонный пол в большинстве случаев безопасно для 3,5-дюймовых оптических дисков. Кроме того, если для съемных жестких дисков или дисков, подобных Zip, существует несколько промышленных стандартов, то для оптических накопителей определена спецификация ISO. Вам, к примеру, не удастся прочитать содержимое картриджа SyJet с помощью дисковода Jaz, зато не составит труда считывать практически любой 3,5-дюймовый оптический диск на своем 3,5-дюймовом оптическом дисководе, независимо от производителя.
Несколько компаний недавно представили 3,5-дюймовые оптические дисководы, рассчитанные на 640 Мбайт записи, которые воспринимают старые диски объемом 230 Мбайт. Более ранние магнитооптические накопители тратили вдвое больше времени на запись данных, чем на чтение, так как во время первого прохода происходило уничтожение прежней информации, а собственно запись осуществлялась уже на втором проходе. В 640-мегабайтных дисководах, таких как Fujitsu DynaMO 640, максимальная скорость передачи данных составляет почти 4 Мбайт/с, что более чем вдвое превосходит аналогичный показатель для дисководов, рассчитанных на 230 Мбайт. Этого вполне достаточно для запуска приложений прямо с магнитооптического диска. До этого момента людям, занимающимся издательской деятельностью, приходилось выбирать между скоростью съемных жестких дисков и надежностью магнитооптики. Если вам требуется надежное средство для долговременного хранения данных и одновременно вы хотите иметь возможность запускать приложения со съемного носителя, магнитооптика будет для вас оптимальным решением.
5 ноября 1998 года Fujitsu Limited и Sony Corporation объявили о создании и развитии первого устройства магнитооптических дисков емкостью 1,3Гб, установив новый гигабайтный стандарт «GIGAMO». В новом магнитооптическом устройстве также впервые реализована новая технология Magnetical Induced Resolution (MSR), позволяющая читать исключительно малые области с магнитной записью, находящимися за пределами оптического разрешения. Фирма Fujitsu направила свои усилия на создание магнитооптических устройств, а Sony Corporation сконцентрировалась на создании дисков к этим устройствам. О поддержке нового стандарта заявили производители устройств Olympus и Konica, а также производители дисков Kyocera, Teijin, Toso, Hitachi-Maxell, Mitsubishi Chemical и Philips/PDO.
Накопитель на магнито-оптических компакт-дисках СD-MO (Compact Disk — Magneto Optical).Диски СD-MO можно многкратно использовать для записи.Ёмкость от 128 Мбайт до 2,6 Гбайт.
МО-библиотеки. Plasmon серии G МО-библиотеки Plasmon серии G представляют собой новое поколение в ряду магнитно-оптических накопителей, наиболее надежных в работе с архивированием и хранением данных. По сравнению с аналогичными МО-устройствами, доступными сегодня на рынке архивирования информации на МО/WORM-носителях, библиотеки Plasmon серии G предоставляют заказчику расширенные возможности, как по емкости, так и по срокам хранения информации.
UDO2 — разработка компании Plasmon, основанная на технологии ультраплотной записи голубым лазером. Быстрорастущие объемы архивных данных требуют решений с высокой стартовой ёмкостью и возможностью её увеличения по мере развития технологии с минимальными затратами. UDO2-технология позволяет записывать диски размером 60 Гб, что в шесть раз превышает возможности предыдущего поколения записи оптических дисков, таких как МО и DVD. Мобильность UDO2-картриджей в сочетании с возможностью управления извлеченными из библиотеки носителями (offline хранение) позволяют практически неограниченно увеличивать ёмкость хранилища.
Существующий метод однократной записи в рамках UDO2-технологии — качественно новый подход к созданию электронного архива, то есть массива информации, который нужно хранить десятилетиями в неизменном виде и время от времени пополнять новыми данными. Возможность случайного или умышленного удаления информации в этом случае исключена на физическом уровне.
Помимо дисков однократной записи (WORM), поддерживаются также перезаписываемые носители (RW).
Важная информация должна храниться самым надежным способом. Однако ценность информации многократно увеличивается, если к ней может быть получен оперативный доступ. Библиотеки G-серии обеспечивают и то, и другое одновременно. Высоконадежный способ записи позволяет хранить информацию на UDO-носителе не менее 50 лет. Доступ к данным осуществляется непрерывно, причем показатель времени доступа, которое обеспечивает UDO-привод, в 4 раза лучше, чем у предшественников.
Развитие рынка информационных технологий в последние годы идет нарастающими темпами. Оптические диски UDO2 ёмкостью 60 ГБ — это только второе поколение носителей на основе технологии записи голубым лазером, в течение ближайших 3-х лет появится третье поколениеэтих дисков в течение с заявленной ёмкостью до 240 ГБ. При этом все последующие поколения UDO-дисков будут обратно совместимы.
UDO-библиотеки от Plasmon — накопители высшего класса, ориентированные на профессиональные архивные решения. В настоящее время они являются авангардом на рынке архивного хранения данных.
Уникальные возможности накопителей G-серии обеспечивают максимальную надежность:
Мобильные приводы. Возможность замены приводов для модернизации и ремонта без выключения питания. Резервные источники питания. Гарантируют бесперебойное питание накопителя в случае выключения питания в помещении. Сканирующее устройство штрих-кодов. Распознает и запоминает штрих-коды каждого диска для более эффективного управления хранением. Система терморегуляции. Совмещенная (автоматическая и ручная) система терморегуляции позволяет поддерживать оптимальную температуру и охлаждать устройство без выключения питания.
МО-библиотеки Plasmon серии G являются идеальным архивным решением для приложений, требующих переработки большого количества документов с возможностью круглосуточной выборки информации. Используя новую усовершенствованную технологию в приводах 14X и поддерживая МО-носители емкостью 9,1 GB, библиотеки Plasmon серии G предоставляют пользователю архивную емкость, доступность данных и надежность хранения, превосходящие аналогичные параметры в оптических технологиях СD/DVD-библиотек. Магнитно-оптическая технология более всего пригодна для обеспечения быстрого и надёжного доступа к данным, архивированию данных и работе в многопользовательской среде, в особенности в решениях на основе WORM. Низкая цена за гигабайт информации. Благодаря использованию магнито-оптических приводов 14Х с носителями 9.1GB media, библиотеки серии G предоставляют заказчику гигантский объем хранения с низкой ценой за гигабайт информации. Долговечность сохранения данных. МО/WORM-носители имеют срок хранения информации, начиная от 30 лет и дольше, что ставит эту технологию выше остальных при выборе решения по долгосрочному хранению данных. Совместимость приводов и интеграция облегчают работу с библиотекой. Все библиотеки Plasmon серии G укомплектованы одним и тем же приводом для магнитно-оптических носителей, что облегчает поддержку и сервис накопителя. Библиотеки данной серии легко интегрируются как в проектируемые локальные сети, так и в уже существующие. Вместимость до 5,8 ТБ. Используя МО-носители емкостью 9,1ГБ, библиотека G638 вмещает до 5.8 ТБ архивной информации. Для увеличения количества информации, хранимой в библиотеке Plasmon серии G, используется носители 5.25-inch. Поддержка программного обеспечения. MO-библиотеки Plasmon поддерживаются основными производителями программного обеспечения по управлению МО-библиотеками, в числе которых K-Par, BacBone, OTG, и Qstar. В случае замены на другую модель той же серии, программное обеспечение может быть переустановлено на новую библиотеку. Комплектация. Полный комплект поставки состоит из основного модуля библиотеки, отличающихся по количеству слотов и установленных приводов MO/WORM 9.1GB, и программного обеспечения управления накопителем, с возможностью включения в конфигурацию дополнительных устройств.
Технические спецификации. Характеристики: Малые МО-библиотеки. Модель — G64 и G104/ Максимальная емкость — 580GB , 950GB. Максимальное число дисков — 64 , 104. Количество приводов — 2-4 , 2-4. Picker — dual, dual. Наработка робота на отказ — 2,000,000 циклов. Большие МО-Библиотеки. Модель — G164 и G238 и G438 и G638. Максимальная емкость — 1.5TB, 2.2TB, 4TB, 5.8TB . Максимальное число дисков – 164, 238, 438, 638 . Количество приводов — 4-6 , 4-10, 4-10 , 6-12. Picker — dual, dual, dual ,dual. Наработка робота на отказ 2,000,000 циклов .
Габариты : Малые МО-библиотеки. Высота (см) — 118.4, 118.4. Глубина (см) — 83.3, 83.3. Ширина (см) — 48, 48. Вес (кг) — 97.5, 97.5. Вес, брутто (кг) — 120.2, 120.2. Большие МО-Библиотеки. Высота (см) – 177, 177, 177, 177. Глубина (см) — 90.4, 90.4, 90.4, 90.4. Ширина (см) — 69 , 69 , 51.2 , 105. Вес (кг) — 190.5 , 193.2 ,241.5 ,289.8 . Вес, брутто (кг) — 258.5, 261.3, 320.9, 389.6.
Спецификации привода Тип привода — Sony, Магнитооптика, 9.1GB (14X) Размер буфера привода — 8MB Совместимость с МО — носителями (емкость) — Read/write: 9.1GB, 8.6GB, 5.2GB, 4.8GB, 2.6GB (MO and LIMDOW), 2.3GBRead: 1.3GB, 1.2GB, 650MB, 600MB Скорость вращения (оборотов в минуту). — 3,000 (G64, 104), 3,300 (G 164, 238), 3,600 (G 438, 638)
Условия работы МО — библиотек Plasmon серии G. Окружающая температура (во время работы) От 10 до 40°C Относительная влажность (во время работы) От 10% до 90%, без конденсации Не рабочий температурный режим От -30 до 10 и от 40 до 60°C Уровень влажности для хранения От 10 до 90%, без конденсации Напряжение 90-264V/AC Интерфейс SCSI-3