Заблуждение Чем больше мегагерц, тем лучше компьютер

Как включить и настроить Wi-Fi 5 ГГц на ноутбуке или компьютере?

В этой статье я дам ответ на два популярных вопроса связанных с Wi-Fi 5 ГГц на ноутбуках и компьютерах с установленной Windows 10, 8, 7. Расскажу и покажу как выполнить подключение ноутбука или ПК к Wi-Fi сети в данном диапазоне. Как включить и настроить Wi-Fi 5 ГГц на компьютере. Я заметил, что многие заблуждаются в этих вопросах и не совсем понимают, как вообще это работает и что такое этот Wi-Fi на частоте 5 ГГц. Сразу скажу, что поддержка данного диапазона должна быть на уровне Wi-Fi приемника, который встроен в вашем ноутбуке или подключен к компьютеру. Именно аппаратная поддержка. Если приемник не поддерживает этот диапазон, то решить эту проблему настройками или драйверами не получится. Только заменой приемника. Но обо всем по порядку.

Простым языком о том, как это работает. Есть двухдиапазонные роутеры, которые одновременно раздают Wi-Fi сеть в диапазоне 2.4 ГГц и 5 ГГц. Есть стандарты Wi-Fi сети: 802.11a/b/g/n/ac/ax. Самые распространенные на сегодняшний день 802.11n (работает в диапазоне 2.4 ГГц и 5 ГГц) и 802.11ac (работает только в диапазоне 5 ГГц) . Самый новый стандарт 802.11ax может работать на частоте 2.4 и 5 ГГц. Поддержка определенного стандарта Wi-Fi сети и соответственно частоты зависит от Wi-Fi модуля (приемника) . Если, например, приемник поддерживает только 802.11a/b/g/n, то он будет видеть сети только в диапазоне 2.4 ГГц (несмотря на то, что стандарт n может работать на 5 ГГц) . Если есть поддержка 802.11ac/ax, то он точно поддерживает диапазон 5 ГГц.

Выводы: для подключения к Wi-Fi сети в диапазоне 5 ГГц нам нужен роутер (точка доступа) который будет раздавать сеть в данном диапазоне и приемник (в ноутбуке, компьютере) , который на аппаратном уровне поддерживает данный диапазон. Это может быть Wi-Fi модуль в ноутбуке, в телефоне, встроенный в материнскую плату, или USB Wi-Fi адаптер подключенный к ПК. Как правило, в характеристиках ноутбука, или адаптера указана информация о поддерживаемом диапазоне. Если ее нет, то можно ориентироваться по стандартах Wi-Fi, которые он поддерживает.

Как выполнить проверку и узнать, есть ли поддержка диапазона 5 ГГц на вашем ноутбуке или компьютере я уже писал в отдельной статье: почему ноутбук, смартфон, или планшет не видит Wi-Fi сеть 5 GHz. Если есть поддержка, и в радиусе есть сети, которые транслируются в диапазоне 5 ГГц, то все должно работать. Если ваш ноутбук или ПК не поддерживает этот диапазон, то в случае с ноутбуком нужно либо менять Wi-Fi модуль, либо подключать внешний USB адаптер с поддержкой Wi-Fi 5 ГГц. В случае с ПК нужен другой Wi-Fi адаптер.

Почему это не так:

Время, которое занимает выполнение операций, важнее тактовой частоты.

Тактовую частоту корректно сравнивать только
у процессоров одного модельного ряда с одинаковой архитектурой. Хотя частота Intel 8088 и была почти в пять раз выше, чем у MOS Technology 6502, на деле одна и та же операция могла занимать у Intel 8088 больше тактов, из-за чего преимущество в частоте нивелировалось. Так было и
в дальнейшем: сначала Apple, а потом и AMD пытались разоблачить «миф о мегагерцах». В 2006 году к ним наконец присоединилась и Intel, которая достигла предела тактовой частоты на архитектуре, которую тогда использовала в настольных процессорах, и сменила парадигму.

Сегодня число операций, которое выполняет процессор
за один такт, как никогда важнее тактовой частоты. Дело
в том, что чем выше частота, тем выше тепловыделение,
а потому создатели мобильных процессоров делают упор
на оптимизацию, а не сухие цифры. Миф, впрочем, никуда
не исчез, и даже эволюционировал: так, многие начали считать, что скорость работы процессора пропорциональна числу ядер в нём. Да и если назвать обывателю два процессора с разной тактовой частотой, то он всё равно
по инерции выберет тот, у которого больше мегагерц.

Где находится процессор

Процессоры расположены на материнской плате компьютера. Они подключаются к так называемому сокету ЦП или слоту ЦП. Обычно рядом с процессором есть рычаг, который используется для обеспечения того, чтобы он оставался прикреплённым к материнской плате.

Процессор состоит из четырёх компонентов: ALU, FPU, регистров и кэш-памяти.

Арифметико-логический блок (ALU) выполняет все арифметические и логические операции. Он работает с целыми числами. Модуль с плавающей запятой (FPU) управляет числами с плавающей запятой, которые являются числами, включающими десятичную дробь.

Тогда есть реестр. В регистре хранятся инструкции, полученные от других частей компьютера. Затем он сообщает ALU, какие процессы выполнять, и сохраняет результаты этих операций.

Наконец, процессоры включают в себя память L1, L2 и L3. Этот кэш-память позволяет процессору хранить данные локально, не извлекая их из ОЗУ. Включение этого компонента помогает сделать ЦП более быстрым и эффективным.

Технические характеристики процессоров

Центральный процессор компьютера имеет ряд технических характеристик, которые определяют самую главную характеристику любого процессора — его производительность и о значении каждой из них полезно знать. Почему? Чтобы в дальнейшем хорошо ориентироваться в обзорах и тестированиях, а также маркировках ЦП. В данной статье я попытаюсь раскрыть основные технические характеристики процессора в понятном для новичков изложении.

  • Тактовая частота;
  • Разрядность;
  • Кэш-память;
  • Количество ядер;
  • Частота и разрядность системной шины;

Тактовая частота — показатель скорости выполнения команд центральным процессором.
Такт — промежуток времени, необходимый для выполнения элементарной операции.

Единицей одного такта принято считать 1 Гц (Герц). Это значит, что если частота равна 1 ГГц (Гига Герц), то ядро процессора выполняет 1 млрд. тактов.

В недалеком прошлом тактовую частоту центрального процессора отождествляли непосредственно с его производительностью, то есть чем выше тактовая частота ЦП, тем он производительнее. На практике имеем ситуацию, когда процессоры с разной частотой имеют одинаковую производительность, потому что за один такт могут выполнять разное количество команд (в зависимости от конструкции ядра, пропускной способности шины, кэш-памяти).

Разрядность процессора — величина, которая определяет количество информации, которое центральный процессор способен обработать за один такт.

Например, если разрядность процессора равна 16, это значит, что он способен обработать 16 бит информации за один такт.

Думаю, всем понятно, что чем выше разрядность процессора, тем большие объемы информации он может обрабатывать.

В настоящее время используются 32- и 64-разрядные процессоры. Разрядность процессора не означает, что он обязан выполнять команды с такой же самой разрядностью.

Кэш-память – это быстродействующая память компьютера, предназначена для временного хранения информации (кода выполняемых программ и данных), необходимых центральному процессору.

Дело в том, что производительность оперативной памяти, сравнительно с производительностью ЦП намного ниже. Получается, что процессор ждет, когда поступят данные от оперативной памяти – что понижает производительность процессора, а значит и производительность всей системы. Кэш-память уменьшает время ожидания процессора, сохраняя в себе данные и код выполняемых программ, к которым наиболее часто обращался процессор (отличие кэш-памяти от оперативной памяти компьютера – скорость работы кэш-памяти в десятки раз выше).

Кэш-память, как и обычная память, имеет разрядность . Чем выше разрядность кэш-памяти тем с большими объемами данных может она работать.

Различают кэш-память трех уровней: кэш-память первого (L1), второго (L2) и третьего (L3). Наиболее часто в современных компьютерах применяют первые два уровня.

Кэш-память первого уровня расположена на одном кристалле с процессором и работает на частоте ЦП (отсюда и наибольшее быстродействие) и используется непосредственно ядром процессора.

Емкость кэш-памяти первого уровня невелика (в силу дороговизны) и исчисляется килобайтами (обычно не более 128 Кбайт).

Кэш-память второго уровня — это высокоскоростная память, выполняющая те функции, что и кэш L1. Разница между L1 и L2 в том, что последняя имеет более низкую скорость, но больший объем (от 128 Кбайт до 12 Мбайт), что очень полезно для выполнения ресурсоемких задач.

Кэш-память третьего уровня расположена на материнской плате. L3 значительно медленнее L1и L2, но быстрее оперативной памяти. Понятно, что объем L3 больше объема L1и L2 . Кэш-память третьего уровня встречается в очень мощных компьютерах.

Современные технологии изготовления процессоров позволяют разместить в одном корпусе более одного ядра. Наличие нескольких ядер значительно увеличивает производительность процессора, но это не означает что присутствие n ядер дает увеличение производительности в n раз. Кроме этого, проблема многоядерности процессоров заключается в том, что н а сегодняшний день существует сравнительно немного программ, написанных с учетом наличия у процессора нескольких ядер.

Многоядерность процессора, прежде всего, позволяет реализовать функцию многозадачности: распределять работу приложений между ядрами процессора. Это означает, что каждое отдельное ядро работает со “своим” приложением.

Системная шина процессора (FSB — Front Side Bus) — это набор сигнальных линий для обмена информацией ЦП с внутренними устройствами (ОЗУ, ПЗУ, таймер, порты ввода-вывода и др.) компьютера. FSB фактически соединяет процессор с остальными устройствами в системном блоке.

Главными характеристиками шины являются ее разрядность и частота работы. Частота шины — это тактовая частота, с которой происходит обмен данными между процессором и системной шиной компьютера.

Высокая скорость передачи данных шины обеспечивает возможность быстрого получения процессором и устройствами компьютера необходимой информации и команд.

Частота работы всех современные процессоров в несколько раз превышает частоту системной шины, поэтому процессор работает на столько, на сколько ему это позволяет системная шина. Величина, на которую частота процессора превышает частоту системной шины, называется множителем.

Что такое тактовая частота?

Само понятие тактовой частоты указывает человеку на то, какое количество вычислений ЦП может произвести в единицу времени. Учитывая современные веяния и разнообразие товаров то показатель может варьироваться в пределах от 1 до 4,6 Ггц. Но многие пользуются разгоном, что позволяет получить еще больший прирост производительности.

С появлением многоядерных процессоров многие начали ошибочно считать, что если у каждого ядра частота равна 3 Ггц и у него в общей сложности 4 ядра, то общий показатель будет равен 12, но данные показатели не суммируются из-за особенностей работы самого компонента, а также специфики определенных программ. Так, например, некоторые и вовсе не могут работать с многоядерными процессорами, хотя в наше время большинство все-таки может это делать.

Но несмотря на то, что тактовая частота не суммируется, общий показатель производительности компонента все равно растет, так как на каждое ядро приходится своя вычислительная мощность. И теперь, разобравшись в особенностях современных ЦП, переходим к самому мифу – действительно ли чем больше гигагерц, тем лучше?

Во время, когда не было многоядерных процессоров, определяющим фактором скорости работы компонента действительно была частота. Сейчас же все несколько изменилось: появилось множество архитектур, различное количество кэша, ядер и другие особенности.

Все это непосредственным образом сказывается на работоспособности детали и каждый процессор необходимо рассматривать в отдельности. Самое главное, что требуется помнить – старый ЦП с 3,2 Ггц вполне вероятно окажется хуже современного аналога с 2,8 Ггц.

Так, например, относительно недавно в продаже появилось новое поколение процессоров от Intel – CoffeeLakeи по относительно доступной цене сейчас каждый может приобрести новинку и при этом получить неплохую производительность.

Как и какой выбрать процессор — характеристики

Тактовая частота — Основной параметр производительности, указывается в герцах и означает количество рабочих операций в секунду. Указывается в характеристиках:

  • Внутренняя — базовая. Скорость обработки данных внутри процессора.
  • Внешняя — для оперативной памяти. Скорость обращения к оперативной памяти.

Когда выбираете ЦП, оперативную память и материнскую плату — всегда смотрите на частоту обращения к ОЗУ, чтобы эти показатели были одинаковыми. А то, частота оперативки может оказаться выше, чем поддерживает материнская плата и процессор, и потенциал ее просто не будет раскрыт.

Также смотрите на объем поддерживаемой оперативной памяти, он может оказаться меньше, чем вы собираетесь установить.

Плюс, многие модели, особенно от AMD сильно зависят в производительности от оперативки, поэтому выбирайте ее желательно с такой же частотой, которая указана на процессоре.

Количество ядер — сейчас одноядерных моделей практически нет. Если программное обеспечение или игра поддерживает многоядерность — то работать будет куда быстрее. Обычно встречаются модели с 4 -6 ядрами, чего вполне хватает, для серьезных игр и программ.

Сокет подключения — тут стоит отталкиваться от того, какой сокет поддерживает ваша материнская плата. Обязательно нужно смотреть этот параметр иначе ЦП просто не установить на главную плату.

BOX или OEM — если не собираетесь отдельно приобретать кулер на ЦП, то берите BOX версию, т.к. там он уже будет в коробке. Но, я все-таки рекомендую брать отдельно, т.к. зачастую в боксовых версиях, вентиляторы плохо справляются с охлаждением — особенно при разгоне, даже незначительном.

Температура и тепловыделение — какая поддерживается максимальная и стоит ли смотреть отдельно хороший вентилятор. Лучше — всегда брать отдельно кулер если собираетесь играть в игры.

Кэш — чем больше объем, тем меньше будет обращений к основной ОЗУ для выполнения самых часто используемых данных. Бывает L1, L2 и L3. Первый самый быстрый, а третий самый медленный.

Встроенный видеоконтроллер — есть ли он. Позволяет обойтись без приобретения отдельной видеокарты. Сильной производительностью не блещет, но в простые игры играть можно вполне себе хорошо. Но, такие модели и стоят подороже.

Интересно! В любом случае при выборе ЦП смотрите, чтобы его поддерживала материнская плата и оперативная память подходила. Ориентируйтесь на бюджет и на задачи, которые будете решать на компьютере.

В заключение

Это основные моменты, на которые обязательно надо обратить свое внимание при выборе ЦП. В любом случае — это тот компонент, который устанавливается в ПК на большой срок и экономить на нем не стоит. Хороший ЦП можно не менять в течение пяти лет, в отличие от той же видеокарты.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector