Выбор правильного блока питания

Зависимость веса блока питания от его качества

Одним из критериев выбора хорошего блока питания может являться. его вес. Качественные БП всегда тяжелые, а китайцы экономят медь. 🙂 Разница в весе «человеческого» и «дешевого» БП — 2 — 3 раза.

Re: Зависимость веса блока питания от его качества

интересный факт,
похоже только я выбираю железо для компа не на бум, не по красоте и тд

Пока выбирал утюг, успел стать ветераном на трех форумах, посвященных бытовой технике.

я перед тем как купить чтото стоящее больше 5к рублей читаю форумы, обзоры, цены всевозможные, только этот ноут на бум покупал потому что попался дешего на аукционе..

Критерии отбора

Как обычно, для начала перечислим список критериев, на которых должен остановиться покупатель во время выбора БП:

  1. Мощность максимальная
  2. Мощность по каналам +3,3 и +5В
  3. Максимальный ток, обеспечиваемый по каналам +3,3, +5 и +12В.
  4. Количество разъемов
  5. Масса блока питания
  6. Наличие PFC/Active PFC
  7. Вентиляторы
  8. Бренд

Мощность потребления

Конечно же, первой и наиболее важной характеристикой является максимальная мощность, обеспечиваемая БП. Обычно, продвинутые пользователи этим и ограничиваются. В частности, если это сборный покупной системный блок, то чаще всего покупатели вообще забывают поинтересоваться, какой блок питания установлен в системном блоке.

Кратко скажу, что все современные БП выполняются по стандарту ATX и удовлетворяют одной из его версий. Сейчас можно встретить БП, удовлетворяющие спецификации 1.3 или 2.2. Версия стандарта ATX12V 2.2 конечно предъявляет более высокие требования к блокам питания.

Относительно версии 1.3 произошли значительные изменения по увеличению выдаваемых токов, кабель питания ATX изменен с 20-pin на 24-pin (24-контактный), обязателен SATA кабель питания. В БП высшей ценовой категории также могут быть дополнительные 6-pin разъемы питания (для видеокарт с энергопотреблением больше 75Вт) и 8-pin +12В разъем вместо 4-pin (для будущих процессоров).

Дело в том, что современные мощные видеокарты потребляют до 120 Вт, в то время как разъем PCI Express может обеспечивать только 75Вт, в связи с этим к видеокартам подключают дополнительные разъемы питания.

ATX12V 2.x

Разъемы качественного блока, удовлетворяющего спецификации ATX12V 2.х должны выглядеть следующим образом:

Как было сказано, выбранный блок питания должен обеспечивать максимальную мощность, удовлетворяющую с запасом 25% максимальной мощности, потребляемой элементами вашей системы. Дело в том, что указываемая на БП мощность — максимальная, не факт, что блок питания обеспечит её, так как КПД любого источника питания менее 100%.

Чтобы рассчитать потребляемую мощность вашей системой, необходимо просуммировать максимальное энергопотребление всех ваших устройств. Не забудьте, что если у вас видеокарты используются в режиме SLI или CrossFire, то мощность почти удваивается.

Для расчета максимальной потребляемой мощности можно воспользоваться калькуляторами от производителей блоков питания, памяти и сайтов по разгону:

Не все калькуляторы считают одинаково, некоторые имеют старую базу компонентов; калькулятор ASUS считает с огромным запасом, так что им пользоваться мы не рекомендуем.

Токи потребления

Далее, каждое устройство подключается к одному или нескольким каналам напряжения, потребляя от них ток. Соответственно, для понимания нагрузки необходимо просуммировать токи по каждому из каналов с учетом тех устройств, что на них «висят».

Рассмотрим требования, к БП, указанные в разных версиях стандарта ATX12V.

(*) Во всех блоках питания стандарта ATX12V 2.x один источник +12В, но он поделен на два с раздельной защитой от перегрузки по току. Поэтому ток указывается как сумма тока по 2 каналам +12V1 и +12V2. Линия +12В1 соединяется с разъемами питания ATX и периферийных устройств, а +12В2 с 4-pin разъемом +12В.
Смысл этого разделения в том, чтобы разграничить нагрузку, потребляемую периферией и процессором.

При выпуске новых версий спецификаций БП обозначилась тенденция по увеличению требований по току канала +12В и уменьшению по +3,3 и +5. Это связано с тем, что видеокарты и процессоры, как основных потребителей тока, стараются перевести на каналы +12В.

Разъемы БП

Разъемов должно быть достаточное кол-во, чтобы вы смогли подключить всех потребителей. Естественно, их количество ограничивается возможностями БП выдать достаточный ток.

Так что их должно быть не слишком много, но и не мало, что неудобно. Скажем, в новых БП ATX12V версии 2.2 должно быть не менее 2 разъемов SATA, основной разъем 24-pin + дополнительные разъемы питания процессора и видеокарты (4-pin и 6/8-pin).

Также длина кабелей от блока питания должны быть достаточной для больших корпусов.

Масса БП

Перед покупкой БП, стоит взвесить его или хотя бы подержать в руках. Это позволяет более-менее оценить его «начинку» без его вскрытия. Конечно, жто неточный способ, однако он позволяет отделить явно «пустые» БП.

Масса БП зависит от толщины стенок, габаритов и материала вентиляторов и кол-ва дросселей и радиаторов внутри. В частности, если в БП не хватает каких-либо катушек или радиаторов (что говорит об «упрощении» электрической схемы), то он будет весить 700-900 г. Средний БП весит от 900 г до 1,2 кг.

PFС/Активный PFC

PFC (Power Factor Correction) — это коррекция коэффициента мощности. Смысл этого коэффициента в том, что он показывает отношение активной (потребляемой) мощности к полной мощности системы. Грубо говоря, из-за наличия в цепи импульсных блоков питания конденсаторов и катушек, далеко не вся энергия сети превращается в потребляемую энергию и происходит это нелинейно. Конденсатор заряжается большим током и быстро в виде импульса разряжается.

Для стабилизации параметров схемы всегда эти пульсации надо сглаживать. Для этого и предназначено PFC, которое эти пульсации уменьшает по амплитуда и «растягивает» во времени.

PFС встречается в блоках питания пассивный и активный.
Пассивный представляет собой простую катушку (дроссель), которая только портит параметры схемы. Для пользователя пассивный PFС не представляет никакой пользы.

Активный PFC — это повышающий преобразователь, который встраивается между диодным мостом (выпрямителем) и конденсатором, который стабилизирует напряжение на конденсаторе примерно на уровне 400V. Активный PFC питается от несглаженного напряжения, фильтруя помехи сети и ограничивая ток сети, приближая форму тока к линейной.

Вентиляторы

Вентиляторы могут быть установлены на боковой стенке сзади, так и снизу. Встречаются вентиляторы 80х80 мм и 120х120 мм.
Последние более тихоходные, и следовательно, менее шумные. В принципе. они и охлаждают лучше.

Упаковка и комплект поставки

Блоки питания Silencer являются продукцией компании OCZ, точнее ее подразделения PC Power & Cooling, купленного в 2007 году (о покупках компании OCZ я уже писал в обзоре их SSD на AppleInsider, поэтому повторяться не буду). С момента покупки, это подразделение трудится над премиум-решениями в области питания компьютеров.

Очень примитивным, но зачастую действенным способом оценки качества блока питания можно считать оценку «на вес». Разумеется, это метод очень грубый, но в большинстве случаев действенный, так как хороший блок питания весить мало явно не должен: слишком много всего должно быть внутри. Silencer по этому критерию сразу проходит первую проверку: вес коробки превышает солидные 3 кг. Сама коробка оформлена с чувством вкуса: белый картон, минимум надписей на передней поверхности, основные детали сзади. Понятно, что упаковка — не основной критерий выбора для блока питания, но приятно, что даже этому уделяется внимание.

Общий вид

В коробке лежат два матерчатых мешка (внимание к деталям продолжается), в одном находится сам блок питания, в другом — сменные кабели для подключения периферии. Дополнительные кабели крепятся к четырем- и пятипиновым «авиационным» разъемам и надежно фиксируются гайкой. Четырехпиновые служат для питания видеокарт, пятипиновые — для дисков и периферии. Наличие на разъеме выступа-ключа не позволит что-то сделать неправильно даже самому сильному и глупому пользователю. Благодаря этому вы сможете подключить столько кабелей, сколько вам надо, и ни одним больше. Любители прозрачных окошек должны быть в восторге. Дополнительный плюс — блок питания покрашен в снежно-белый цвет, что также смотрится необычно и интересно. Основные кабели питания для материнской платы — несъемные (куда ж без них-то).

Разъемы Silencer

Кроме того, в комплекте вы получите: сетевой шнур, несколько стяжек и 4 винта с накатанными головками для установки БП в корпус.

В мешочках

В остальном блок питания внешне выглядит практически стандартно: большой вентилятор, решетка на задней панели для обеспечения вывода воздуха, вход для сетевого шнура и выключатель питания. На задней панели, правда, присутствует еще один необычный элемент: переключатель режима работы вентилятора (солидный зверь от Globe Fan, 140 х 140 мм, до 2000 оборотов). Оправдывая свое название, Silencer поддерживает особый тихий режим работы, при котором вентилятор при нагрузке до 350 ватт практически не вращается, обеспечивая невероятно тихую работу. Поэтому, если ваш компьютер не часто бывает загружен на полную, включить этот режим — более чем удачная идея. Во втором режиме вентилятор работает все время, регулируя обороты в зависимости от нагрузки и температуры. Я бы советовал включать этот режим, когда компьютер находится в помещении с повышенной температурой.

Импульсный БП и его устройство.

Ниже представлена схема одноконтактного импульсного БП (эта схема является простейшей):

Что такое блок питания.

Фактически блоки питания импульсного вида являются инверторной системой. В этом БП входящая в него электроэнергия сначала выпрямляется (т. е. образуется постоянный электрический ток), а после этого преобразуется в прямоугольные импульсы определённой частоты и скважности. После этого эти прямоугольные импульсы на трансформатор (в случае если конструкция БП включает в себя гальваническую развязку) или же сразу на выходной ФНЧ (в случае если отсутствует гальваническая развязка). Из-за того, что в импульсных БП с ростом частоты повышается эффективность работы трансформатора и в значительной степени снижается требование к сечению сердечника, в них могут применяться гораздо более малогабаритные трансформаторы чем в классических решениях.

В большинстве случаев сердечник трансформатора импульсного вида может быть выполнен из ферримагнитных материалов, в отличии от низкочастотных трансформаторах, в которых используется электротехническая сталь.

Стабилизация напряжения в импульсных блоках питания обеспечивается путём отрицательной обратной связи. Она позволяет поддерживать выходное напряжение на относительно постоянном уровне. Такая связь может быть сконструирована различными способами. В случае наличия в конструкции БП гальванической развязки чаще всего используют способ использования связи посредством одной из выходных обмоток трансформатора или же способ оптрона. Скважность на выходе ШИМ-контроллера зависит от сигнала обратной связи, который, в свою очередь, зависит от выходного напряжения. В том случае, если развязка в БП не предусмотрена, используется обычный резистивный делитель напряжения. Благодаря этому импульсные блоки питания могут поддерживать стабильное выходное напряжение.

Резюме

Блок питания (без учета особых условий) должен:

  • иметь мощность не ниже 400 — 460 Вт,
  • вентилятор диаметром 120 — 130 мм,
  • «умную» схему, управляющую оборотами двигателя в зависимости от температуры,
  • обладать достаточным весом.

Удачной модернизации! В следующей статье мы продолжим тему питания компьютера и познакомимся с тем, как устроен UPS (источник бесперебойного питания) компьютера.

Хотите прослушать звуковой подкаст этой статьи? Прослушайте и не пожалеете! Крепче запомнится…

С вами был Виктор Геронда.

Понравилась? Подпишитесь на обновления, чтобы не пропустить интересную статью!

P.S. Текст был озвучен Игорем Козловым — известным блоггером, диктором и музыкантом. Игорь ведет несколько блогов. Самый, пожалуй, известный из них — это «Блогопрактика», который лично мне очень нравится. Рекомендую!

Вес блока питания компьютера

Инструкция по блокам питания

Прикрепленное изображение

Сообщение отредактировал Мрачный — 27.09.13, 14:29

Что такое — Блок Питания.

Блок питания (англ. power supply unit, PSU) — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электрической энергией постоянного тока, путём преобразования сетевого напряжения до требуемых значений. В некоторой степени блок питания также выполняет функции стабилизации и защиты от незначительных помех питающего напряжения и участвует в охлаждении компонентов персонального компьютера.

Сообщение отредактировал Мрачный — 22.09.13, 14:49

Из чего состоит блок питания.

  • выпрямитель сетевой,
  • генератор,
  • трансформатор,
  • выпрямитель низковольтный,
  • стабилизатор.

Сообщение отредактировал Мрачный — 22.09.13, 14:34

Принцип работы блока питания.

  1. Сетевое напряжение сначала выпрямляется.
  2. Далее заряжает конденсаторы фильтра.
  3. Очищается от помех блоком PFC и преобразуется в синусоиду с частотой 50-150 килогерц.
  4. Далее напряжение понижается до 5 и 12 вольт.

Сообщение отредактировал Мрачный — 22.09.13, 14:34

Комфортные напряжения.

  • Линия +3V — от 3,20 до 3,45 вольта,
  • Линия +5V — от 4,85 до 5,30 вольта
  • Линия +12V — от 11,80 до 12,5 вольта.

Сообщение отредактировал Мрачный — 22.09.13, 14:34

Power Factor Correction (PFC).

Современные блоки становятся все мощнее, а провода в розетках не меняются. Это приводит к возникновению импульсных помех – блок питания тоже не лампочка и потребляет, как и процессор, энергию импульсами. Чем сильнее и неравномернее нагрузка на блок, тем больше помех он выпустит в электросеть.
Для борьбы с этим явлением разработан PFC.
Это мощный дроссель, устанавливаемый после выпрямителя до фильтрующих конденсаторов.
Первое, что он делает, это ограничение тока заряда вышеупомянутых фильтров. При включении в сеть блока без PFC очень часто слышен характерный щелчок – потребляемый ток в первые миллисекунды может в несколько раз превышать паспортный и это приводит к искрению в выключателе. В процессе работы компьютера модуль PFC гасит такие же импульсы от заряда разнообразных конденсаторов внутри компьютера и раскрутки моторов винчестеров.
Встречаются два варианта исполнения модулей – пассивный и активный.
Второй отличается наличием управляющей схемы, связанной с вторичным (низковольтным) каскадом блока питания. Это позволяет быстрее реагировать на помехи и лучше их сглаживать.

Сообщение отредактировал Мрачный — 22.09.13, 14:33

Что и по каким линиям питает блок питания.

Блоки питания выдают три базовых напряжения: +3.3, +5 и +12 V.
+3.3 предназначена для питания выходных каскадов системной логики
+5 — питает логику почти всех PCI- и IDE-девайсов
+12 — является базовым напряжением для питания процессора и ядра видеокарты

Сообщение отредактировал Мрачный — 27.09.13, 10:47

VRM, блок регулировки напряжения.

Используется для регулировки напряжения, подаваемого для всех устройств материнской платы. Например, современные процессоры работают на меньшем напряжении, чем остальные компоненты системы. Не для кого не секрет, что новые вычислительные устройства, такие как различные чипы и процессоры, у которых малый размер транзистора, потребляют меньшее питания.
Центральный же процессор работает лучше на высоком напряжении, но хуже при высокой температуре. Выделение тепла процессором — в квадратичной зависимости от уровня напряжения, подаваемого на процессор. Возникает дилемма: при увеличении напряжения процессор должен работать быстрее, но увеличивается его температура, что влечет за собой ухудшение его работы. Излишнее тепло от процессора отводится радиаторами и вентиляторами. Если вольтаж и температура процессора слишком высоки, он может перегреться и сгореть. Именно поэтому разъем для процессора на материнской плате располагают как можно ближе к блоку питания, в котором работает вентилятор на вытяжку. Горячий воздух от процессора (а теперь и с других горячих устройств, таких как видеокарты и некоторые жесткие диски) сразу же вытягивается из корпуса. Некоторые экстремальные оверклокеры настолько разгоняют систему, что появляется необходимость в установке дополнительного вентилятора-вытяжки, место для которого есть уже во всех корпусах.
Для наилучшего соотношения мощности, скорости и напряжения, компания Intel для своих новых процессоров разработала специальный тип регулятора напряжения, который на входе имеет напряжение от блока питания, а на выход подает стабильное напряжение необходимого значения на сам процессор. Кроме того, новый регулятор напряжения — программируемый, который использует 5 VID (voltage identification — определение напряжения) сигналы, с помощью которых регулируется подаваемое на него напряжение. VID контакты, как правило идут прям из процессора. Например, для выполнения особо сложной задачи процессору требуется большая вычислительная мощь. Тогда он посылает запрос на регулятор напряжение, который увеличивает напряжение на то значение, которое «прислал» процессор. Такие возможности очень понравятся оверклокерам, для которых некоторые производители материнских плат разрабатывают применение этой функции.

Сообщение отредактировал Мрачный — 27.09.13, 10:51

Конструкция блока питания.

  1. Плата управления токовой защитой;
  2. Дроссель, выполняющий роль как фильтра напряжений +12В и +5В, так и функцию групповой стабилизации;
  3. Дроссель фильтра напряжения +3,3В;
  4. Радиатор, на котором размещены выпрямительные диоды выходных напряжений;
  5. Трансформатор главного преобразователя;
  6. Трансформатор, управляющий ключами главного преобразователя;
  7. Трансформатор вспомогательного преобразователя (формирующий дежурное напряжение);
  8. Плата контроллера коррекции коэффициента мощности;
  9. Радиатор, охлаждающий диодный мост и ключи главного преобразователя;
  10. Фильтры сетевого напряжения от помех;
  11. Дроссель корректора коэффициента мощности (PFC);
  12. Конденсатор фильтра сетевого напряжения.

Прикрепленное изображение

Что такое — КПД.

КПД (Коэффициент Полезного Действия) — это отношение полезной работы к затраченной энергии. КПД измеряется в процентах. Чем выше этот коэффициент, тем выше эффективность работы блока питания и тем меньше потери электроэнергии. Снижение потерь, в свою очередь, положительно сказывается на температуре внутри корпуса компьютера и на частоте вращения (шуме) вентиляторов охлаждения.
Типы сертификатов:

Нагрузка на блок питания 20%, 50%, 100%, соответственно.
80 Plus (80%, 80%, 80%)
80 Plus Bronze (81%, 85%, 81%)
80 Plus Silver (85%, 89%, 85%)
80 Plus Gold (88%, 92%, 88%)
80 Plus Platinum (90%, 94%, 91%)
Бывает, что люди задаются вопросом, «если у меня есть блок 550 Вт, то значит он будет выдавать 83% своей мощности?»
Это неправильно. Блок питания будет выдавать 550 Вт, а из розетки брать 550/0.83=662.65 Вт
Чем выше КПД, тем меньшее количество энергии преобразуется в тепло и тем меньше электричества будет брать БП из розетки.
Качественный БП будет выдавать заявленную мощность, независимо от уровня КПД.

Стандарты Блоков питания

Для персональных компьютеров за всю их историю было разработано по крайней мере шесть различных стандартных блоков питания. В последнее время промышленность по установившейся практике выпускает блоки питания на базе ATX. ATX – промышленная спецификация, устанавливающая такие требования к блокам питания, чтобы они подходили к стандартному корпусу ATX, а их электрические характеристики обеспечивали бы функционирование материнской платы ATX.

Стандарт АТ первым использовался в компьютерных блоках питания. Он появился на свет одновременно с первыми IBM-совместимыми компьютерами и применялся вплоть до 1995 года. Блок питания стандарта AT обеспечивал компьютер четырьмя постоянными напряжениями — +5, + 12, -5 и -12 В. Однако по мере развития процессоров и всевозможной периферии, во-первых, росла общая потребляемая компьютером мощность, во-вторых, все больше сказывалось отсутствие в АТ-блоках напряжения +3,3 В, которое приходилось получать непосредственно на системной плате отдельным стабилизатором. Кроме того, формат корпусов AT был не очень удобен для сборки компьютеров и не оптимизирован с точки зрения охлаждения. В блоках питания стандарта AT выключатель питания находится в силовой цепи и обычно выводится на переднюю панель корпуса отдельным проводом. Как следствие, автоматическое включение и выключение компьютера невозможно. Блок питания стандарта AT подключается к материнской плате двумя одинаковыми шестиконтактными разъёмами, включающимися в один 12-контактный разъём на материнской плате. К разъёмам от блока питания идут разноцветные провода, и правильным считается подключение, когда контакты разъёмов с чёрными проводами сходятся в центре разъёма материнской платы. Все это привело к разработке компанией Intel в 1995 г. формата АТХ — нового типа корпусов и блоков питания.

В блоке питания АТХ количество выходных напряжения увеличилось: добавились напряжения +3,3 и +5 В SB (Stand-By). Последнее было введено для реализации таких функций, как «пробуждение» компьютера по сигналу из локальной сети, от модема, по нажатию клавиши на клавиатуре или мыши, а также для реализации «дремлющего» режима S3 Suspend-to-RAM, в котором все текущие данные хранятся в оперативной памяти даже при выключенном компьютере. Очевидно, что напряжение +5 В SB должно присутствовать вне зависимости от того, включен или выключен компьютер (если, конечно, он физически не отключен от розетки), поэтому его стабилизатор — это практически отдельный миниатюрный маломощный блок питания, функционирующий непрерывно. Если в формате AT кнопка включения компьютера снимала с блока питания напряжение 220 В, то в АТХ кнопка включения лишь дает на блок питания команду остановить ШИМ-контроллер основного стабилизатора, но сам блок при этом остается подключенным к сети, и в нем продолжает работать стабилизатор дежурного режима +5 В SB. Для того чтобы отключить блок полностью, требуется либо воспользоваться имеющейся на многих моделях клавишей на задней стенке блока, либо физически отключить его от сети 220 В. Постепенно в стандарт АТХ вносились изменения, но до определенного момента они не оказывали существенного влияния на блок питания. Новой тенденцией, приведшей к заметному с точки зрения пользователя изменению БП, был переход на 12-В питание стабилизатора процессора.

До выпуска компанией Intel процессора Pentium 4 со значительной потребляемой мощностью обычным решением было питание стабилизатора процессора от +5-В шины. Очевидно, что для процессора с потребляемой мощностью, скажем, 50 Вт даже без учета потерь на расположенном на системной плате стабилизаторе (а это еще как минимум 10%) ток при питании от упомянутой шины составит 10 А, что весьма немало. Такие токи, во-первых, осложняют размещение компонентов на системной плате, ибо крупный разъем питания АТХ зачастую трудно расположить в удобном для разработчика печатной платы месте (как можно ближе к стабилизатору питания процессора), а во-вторых, недостаточно плотный контакт в разъеме питания системной платы вызывал перегрев контактов и разъема с дальнейшим ухудшением контакта и более чем вероятными сбоями системы. Выходом из этой ситуации стал переход на питание стабилизатора ЦП от +12-В шины. Известно, что если напряжение в 2,4 раза больше, то ток при той же потребляемой мощности будет в 2,4 раза меньше, а, кроме того, установленный на плате стабилизатор, как и любой преобразователь постоянного тока, увеличивает свой КПД с ростом входного напряжения. Однако возникла другая проблема: поскольку до последнего времени серьезных потребителей +12 В на системной плате не было, то в разъеме ее питания был предусмотрен всего один провод для этого напряжения, что могло привести к перегреву и обгоранию контактов из-за чрезмерно большого тока через них. Эта проблема была решена добавлением еще одного разъема питания системной платы — маленького четырех контактного ATX12V, который не только добавил два дополнительных провода +12 В, но и благодаря своим скромным размерам позволил размещать его рядом со стабилизаторами питания процессора, серьезно упростив работу разработчикам печатных плат. Таким образом, летом 2000 г. компания Intel выпустила инженерное дополнение к стандарту АТХ 2.03, названное «ATX12V». Помимо вышеупомянутого разъема, в нем были ужесточены требования к блоку питания: при той же суммарной выходной мощности, что и раньше, блок должен был обеспечивать большие токи по шинам +12 и +3,3 В. Более того, устанавливалась нижняя граница максимального тока по шине +12 В — 10 А вне зависимости от суммарной мощности БП; блок, не обеспечивающий такого тока, не может считаться соответствующим стандарту ATX12V. Так как физически новые блоки отличались от старых лишь дополнительным разъемом, то в продаже в большом количестве появились различные переходники для адаптации АТХ-блоков питания к стандарту ATX12V. Разумеется, в связи с возросшими требованиями к нагрузочным токам для мощных систем такая адаптация была некорректна, но у систем со сравнительно небольшим энергопотреблением никаких проблем не возникало. Следующее заметное изменение принесла версия 1.2 все того же стандарта ATX12V. Напряжение -5 В, до этого момента обязательное для всех блоков питания, практически уже не использовалось: оно подавалось только на системную плату и разъемы ISA, которые уже канули в Лету. Даже в более старых компьютерах, где еще использовались ISA-платы, это напряжение, как правило, не требовалось. В связи с этим в стандарте ATX12V 1.2 напряжение -5 В стало необязательным, и вскоре на рынке появились БП, у которых в разъеме питания системной платы отсутствовал соответствующий провод. Тем временем наметилась новая тенденция: если раньше потребление по шине +3,3 В росло, то теперь оно, напротив, стало падать, ибо все больше производителей стали использовать на своих платах отдельные стабилизаторы, питающиеся от +5 или чаще +12 В и формирующие необходимые для платы напряжения. Более того, современные графические платы питаются уже не от AGP, а от отдельного разъема питания, на который просто не заводится напряжение +3,3 В. Соответственно, требования к этому напряжению падают, а к нагрузочной способности по шине +12 В, наоборот, увеличиваются, особенно учитывая постоянно растущее энергопотребление процессоров.

Для удовлетворения вышеописанных требований был разработан стандарт ATX12V, версия 2.0 (не путать со стандартом АТХ 2.0; ATX12V 2.0 соответствует версии 2.2 стандарта АТХ). Это не просто косметические улучшения БП: изменения довольно серьезны, и старые блоки питания, хотя и будут частично совместимы с системными платами стандарта ATX12V 2.0, во многих случаях придется заменить. Основное отличие нового стандарта в том, что теперь в блоке питания предусмотрены сразу две шины +12 В. Связано это с тем, что увеличить нагрузочный ток по одной шине выше 20 А нельзя — по требованиям стандартов безопасности мощность цепей, к которым есть открытый доступ для оператора, не должна превышать 240 В-А (12 Вх20 А). При этом заметно уменьшились максимальные нагрузочные токи по шинам +3,3 и +5 В (до полутора раз по сравнению с блоками ATX12V 1.1 той же мощности). Претерпел изменения и разъем питания системной платы. Если раньше это был 20-контактный разъем Molex 39-01-2200, то теперь он заменен на 24-контактный Molex 39-01-2240 — добавилось по одному контакту +12, +3,3, +5 В и «земля». Легко заметить, что двадцать крайних контактов у обоих разъемов совершенно одинаковы, поэтому блок питания ATX12V 2.0 можно использовать в паре с ATX12V 1.1-платой (если сбоку от ее разъема питания есть свободное место для четырех «лишних» контактов разъема) и наоборот, однако в последнем случае надо учитывать, что с мощной системой ATX12V 2.0 с большим энергопотреблением блок питания, соответствующий старому стандарту, может не справиться. Привычный четырех контактный разъем ATX12V, предназначенный для питания стабилизатора процессора, в новом стандарте не изменился, но теперь на него подается напряжение +12 В с другого источника, так что процессор имеет свое собственное питание, до некоторой степени независимое от питания системной платы и различной периферии, что должно положительно сказаться на качестве питающих напряжений. Также из нового стандарта полностью исчезло напряжение -5 В: оно не предусмотрено даже как необязательное. Вместе с ним исчез и появившийся несколькими годами раньше в стандарте АТХ 2.01 разъем AUX для дополнительной подпитки системной платы (на него выводились напряжения +5 и +3,3 В, а сам разъем напоминал разъемы питания системных плат форм-фактора AT); несмотря на рекомендацию использовать его в системах с большим энергопотреблением, на практике системные платы с таким разъемом практически не выпускались. Кроме того, разъемы питания Serial ATA-винчестеров теперь стали обязательны, впрочем, последние модели блоков питания ATX12V 1.1 уже выпускались с ними. Также стоит отметить появление в стандарте рекомендаций по максимальным нагрузочным токам для БП мощностью 350 и 400 Вт — до этого регламентировались токи для блоков питания до 300 Вт включительно, что оставляло производителям более мощных БП больший простор для выбора характеристик, а это, в свою очередь, приводило к тому, что блоки большой мощности сильно различались между собой по возможностям, а некоторые не во всем превосходили даже стандартный 300 Вт блок питания.

Вообще говоря, EPS12V — это стандарт для серверов начального уровня. Достаточно часто встречаются в продаже соответствующие ему блоки питания мощностью 400-500 Вт, которые представляют определенный интерес и для владельцев мощных систем стандарта АТХ. Физически блоки стандарта EPS12V по габаритам и расположению крепежных отверстий совместимы с блоками АТХ, так что ничто не препятствует их установке в обычный АТХ-корпус. Разъем питания системной платы стандарта EPS12V аналогичен таковому в ATX12V 2.0-платах, причем не только физически (это 24-контактный разъем такого же типа), но и по разводке контактов; таким образом, к ЕР512V-блоку питания можно без проблем подключать системные платы ATX12V 2.0 и при наличии физической возможности подключить более крупный разъем также и платы ATX12V 1.1 (при отсутствии такой возможности следует использовать переходник). Разъем питания процессоров у EPS12V собственный, восьми контактный. Однако четыре крайних контакта в точности совпадают с разъемом ATX12V, поэтому его также можно напрямую подключить к обычной ATX12V системной плате, если сбоку от установленного на ней разъема есть свободное место, либо же, если места нет, воспользоваться переходником. Важно, что блоки EPS12V бывают как с одним источником + 12 В, так и с двумя, аналогично ATX12V 2.0. В последнем случае подключать на системной плате ATX12V 1.1 второй источник +12 В блока питания (он выведен на 8-контактный разъем питания процессора) можно, только будучи уверенным, что шины питания процессора и шина +12 В с разъема питания самой системной платы полностью разделены; в противном случае системная плата может выйти из строя. С системными платами стандарта ATX12V 2.0 такой проблемы возникнуть не может — у них шины разделены по определению, ибо используются два раздельных источника питания.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector