Как выбрать кулер
для процессора
и вентилятор для ПК
Решили собрать компьютер самостоятельно и сразу же покрылись потом от обилия деталей и непонятной информации? Что ж, давайте уясним кое-что важное. Перегреться от информации можете не только вы, но и детали вашего компьютера. Чтобы этого не произошло, важно знать как правильно выбрать вентилятор для корпуса пк и кулер для процессора. Разбираемся с «Эльдоблогом».
Как выбрать вентилятор для корпуса
Как выбрать кулер для компьютера
Итоги. Какой вентилятор для корпуса выбрать? Какой кулер для процессора выбрать?
реклама
В корпусах используются вентиляторы диаметром 80, 92 и 120 мм. Каждый размер имеет несколько модификаций по мощности (и, соответственно, по производительности). Для примера дан ассортимент вентиляторов Evercool.
Модель | Диаметр | n об/мин | Шум | Q макс | Мощность | Ток |
8025L | 80 | 2000 | 23 | 25 CFM | 1 | 0.08 |
8025M | 80 | 2500 | 25 | 32 CFM | 1.3 | 0.11 |
8025H | 80 | 3000 | 27 | 37 CFM | 1.9 | 0.16 |
9225L | 92 | 1800 | 24 | 30 CFM | 1.1 | 0.07 |
9225M | 92 | 2200 | 26 | 38 CFM | 1.8 | 0.15 |
9225H | 92 | 2600 | 28 | 48 CFM | 2.5 | 0.21 |
12025L | 120 | 1800 | 29 | 71 CFM | 3 | 0.25 |
12025M | 120 | 2000 | 30 | 79 CFM | 3.36 | 0.28 |
12025H | 120 | 2200 | 32 | 85 CFM | 4 | 0.33 |
Мы видим, что для каждого размера есть три модификации (в порядке увеличения оборотов и мощности) — L, M, H. Наиболее распространенной является серия M — она обеспечивает наилучшее соотношение между производительностью и шумом. Нетрудно догадаться, что первые две-три цифры обозначают диаметр, а следующие две высоту. Кстати, диаметр измеряется как размер стороны «квадрата», реальный диаметр крыльчатки на 5-10 мм меньше.
Выбрав нужный вентилятор из таблицы, перед походом в магазин выпишите потребляемый им ток (или мощность), потому что на ценнике продавцы обычно указывают лишь диаметр, ничего не говоря о производительности. А ток или мощность всегда написаны на наклейке вентилятора, поэтому ошибиться будет трудно (особенно если придется покупать вентилятор другой фирмы, у которой своя система обозначений и своя линейка вентиляторов).
Основной характеристикой вентилятора является производительность (расход воздуха) Q, измеряемая в CFM (кубических футах в минуту). Сведения о ней обычно есть на сайте производителя, а иногда и на самом вентиляторе. Однако это максимальная производительность в режиме «настольного вентилятора», при установке в корпус она упадет. Также вентилятор характеризуется создаваемым напором (давлением), скоростью воздушного потока, шумом, потребляемой мощностью, особенностями конструкции и некоторыми другими менее значимыми деталями. Из этих характеристик обычно указывают шум (правда, в каких-то «китайских децибелах», при реальных измерениях он обычно оказывается намного больше), иногда указывают напор, а скорость потока легко вычислить, разделив производительность на эффективную площадь.
Краткий FAQ для тех, кому лень дочитать статью до конца
Тут я дам тезисы и рекомендации общего характера. Некоторые следуют из анализа таблицы характеристик, обоснование остальным будет в конце статьи.
- Чем больше напор вентилятора, тем меньше падает его производительность при установке в корпус.
- Максимальная производительность и напор прямо пропорциональны оборотам.
- Обороты прямо пропорциональны напряжению.
- При одинаковой максимальной производительности — напор, скорость потока и мощность будут меньше, а КПД больше:
- у вентилятора большего диаметра по сравнению с более быстроходным меньшего диаметра;
- у нескольких параллельно включенных вентиляторов на пониженных оборотах по сравнению с одним таким же на повышенных;
- у одного вентилятора большого диаметра по сравнению с несколькими параллельно включенными меньшего диаметра;
- у осевого вентилятора по сравнению с центробежным (бловером).
- При равной максимальной производительности:
- вентилятор большего диаметра заметно тише, чем быстроходный вентилятор меньшего диаметра;
- два параллельно включенных вентилятора на пониженных оборотах намного тише, чем один такой же на повышенных оборотах;
- два параллельно включенных вентилятора могут быть как тише, так и громче, чем один большего диаметра.
Расчет вентиляции корпуса
Сначала рассчитываем необходимый объем воздуха, который нужно прокачать через корпус. Исходной формулой служит уравнение теплового баланса при условии, что теплопередачей через стенки пренебрегаем:
Количество трубок в кулере
Трубки стали устанавливать в кулеры, когда поняли, что мощность экструдированных охладителей конструкционно ограничена. Нужно было поспевать за ростом производительности новых CPU. Число теплотрубок зависит от толщины башни, следовательно — опосредованно от чипа. Попробуем разобраться, как подобрать кулер для современного процессора с учетом количества трубок.
Если требуется охладить чип, который будет работать только на базовой частоте, следует выбирать охладитель с башней толщиной 3-4 см и 3-4 теплотрубками. Смысл в толстых башнях появляется, когда очевидно, что иначе вентилятор будет крутиться на высоких оборотах и рассчитывать на тихую работу не приходится. Если тепловыделение больше 150 W, выбираем модель, в которой от 5 трубок и толщина башен от 6-7 см.
Отметим отсутствие линейной зависимости эффективности кулера от количества трубок. С одной теплотрубкой охладитель может работать лучше, чем с двумя. На его производительность влияет толщина трубок, схема отвода тепла и другие параметры.
Параметры процессора для выбора кулера
Для того, чтобы правильно выбрать кулер, нам нужно знать сокет (Socket) процессора и его тепловыделения (TDP).
3.1. Сокет процессора
Socket – это разъем материнской платы для установки процессора, имеющий также крепление для кулера. Разные сокеты имеют разные типы креплений для кулера.
3.2. Тепловыделение процессора
Что касается тепловыделения (TDP), то этот показатель также часто указывается на сайтах интернет-магазинов. Если TDP процессора не указано, то его легко узнать на сайте другого интернет-магазина или официальных сайтах производителей процессоров.
Есть еще много сайтов, где по номеру модели можно узнать характеристики процессора.
Также можно воспользоваться поисковой системой Google или Яндекс.
Объявления
Тебе давно уже посоветовали: проверь своими приборами сигналы на выводах TL494 на соответствие тому, что описано в документации на нее. Что непонятного? Ты имеешь дело не с «собственным предметом», а с обсосанной тысячу раз TL494.
Попробуйте опустить яркий белый светодиод в банку с зелёнкой. Провода вывести наружу через пробку. Получиться лампа примерно того спектра, к которому у нашего глаза наибольшая чувствительность.
Доброго времени ни у кого случайно не завалялось печатной платы в LAY данного преда в стереоварианте?
Вы знаете — вы (и остальные) зря так относитесь. Думаете — я балуюсь? Я, действительно, не знаю — что вам рисовать. Урезаный комповый АТ-БП вы наверняка видели — нечего его перерисовывать. Топологию его системы все знают наизусть. Да и вопрос не стандартный — его нет в базовых схемах. И я действительно не знаю — что там рисовать — что я и обозначил своим _нечто_. Другое дело: если вы посоветует поставить приборы какие-нибудь куда-нибудь — вот тогда можно будет двигаться. Есть тестеры/мультиметры, есть осциллограф — прошу!
Игровой компьютер
Следующая система — игровой компьютер средней стоимости, весьма популярная среди покупателей модель. Такая система позволяет играть в большинство современных игр на неплохих настройках и стоит при этом вполне разумную сумму.
В качестве такого мы выбрали одну из несерийных конфигураций Flextron 3C :
Процессор Intel Core 2 Duo E8600 (3,33 ГГц)
Кулер для процессора GlacialTech Igloo 5063 PWM (E) PP
Материнская плата ASUS P5Q (чипсет iP45)
Оперативная память 2x 2ГБ DDR2 SDRAM Kingston ValueRAM (PC6400, 800МГц, CL6)
Жёсткий диск 500 ГБ Seagate Barracuda 7200.12
Видеокарта PCI-E 512МБ Sapphire Radeon HD 4850
Привод DVD±RW Optiarc AD-5200S
Картовод Sony MRW620
Корпус IN-WIN IW-S627TAC
На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.
Включение и загрузка
Как обычно, мы наблюдаем включение систем энергосбережения процессора (5-я секунда) и видеокарты (12-я секунда — компьютер хороший, грузится быстро). Таким образом, отсутствие нагрузки само по себе не означает тишину и экономичность — и видеокарта, и процессор зависят в этом вопросе от драйверов.
По сравнению с предыдущими конфигурациями, на графике добавилась ещё одна линия — это разъём дополнительного питания видеокарты.
3DMark’06
Энергопотребление видеокарты меняется очень быстро и очень сильно: ток через разъём дополнительного питания то падает ниже 4 А, то вырастает выше 7 А. Работа же процессора крайне проста — судя по графику энергопотребления, большую часть времени ему просто нечего делать.
FurMark
Занятно, что FurMark обеспечивает очень высокую среднюю нагрузку на видеокарту, но вот таких 7-амперных пиков, как под 3DMark, с ним не видно. Однако благодаря достаточно высокой загрузке процессора, суммарное потребление от шины +12 В под FurMark получается выше, чем под 3DMark’06.
Prime’95
Под Prime’95 видеокарта отдыхает — ток через дополнительный разъём питания падает ниже 1 А. Энергопотребление процессора, впрочем, тоже сравнительно невелико — даже в пиках оно не достигает и 50 Вт, а ведь в это число входят и потери на VRM (стабилизаторе питания процессора).
FurMark + Prime’95
При одновременном запуске FurMark и Prime’95 мы получаем максимальное энергопотребление — и при этом видеокарта заметно опережает процессор (особенно если учесть, что и от голубой линии графика пара ампер приходится на видеокарту: она питается и через разъём PCI-E материнской платы).
Тем не менее, общее энергопотребление сравнительно невелико: 189 Вт. Даже 300-ваттный блок питания обеспечит полуторакратный запас мощности, а уж брать под такой компьютер что-то больше 400 Вт просто нет никакого смысла.
Выбор кулера для разгона процессора
При разгоне растет энергопотребление процессора, особенно сильно — при разгоне с повышением напряжения. В результате процессор с энергопотреблением в 65 ватт может начать «кушать» в два раза больше, достигая уровня топовых моделей. Еще одним важным фактором при разгоне является температура: чем она ниже, тем выше частоты процессора, которых может добиться оверклокер. В результате выбор кулера для разгона становится сложной задачей, в которой надо добиться низких температур у процессора с высоким энергопотреблением.
С другой стороны, покупать топовый кулер или СВО по цене, соизмеримой со стоимостью самого процессора, не имеет смысла, ведь добавив эту сумму при покупке процессора, вы можете взять более быструю модель с большим количеством ядер, получив такой прирост производительности, которую не даст обычный разгон.
Поэтому разумный выбор кулера для разгона процессора, как и сам разгон, всегда будут компромиссом между ценой и производительностью. В поиске ответа на этот вопрос помогут практика, гайды и советы опытных пользователей.
Итоги
Во первых — это работает и на этом можно сделать экстремальное охлаждение и это не требует специальных знаний и навыков, как, например, самодельная фреонка.
Во вторых — на каждый модуль нужна секция толстой СВО для оптимальной работы 15 Амперных модулей.
В третьих — по потребляемому току можно понять насколько хорошо охлаждается элемент. То есть при недостаточном охлаждении они потребляли меньше тока (в моих условиях 10 Ампер вместо 12).
В четвёртых — в близких к идеальным условиях можно получить эффективность приближенную к 50%, то есть на один отводимый ватт тепла нужно подать на модули 2 Ватта питания.
В пятых — система линейно масштабируемая.
Дальше встаёт вопрос уже полномасштабной реализации.
И тут возникает два этапа которые скорее всего и разделятся на две статьи.
Первый — отработка системы управления автоматической регулировки включения модулей, то есть надо сделать так чтобы температура жидкости не уходила ниже точки росы чтобы на водоблоке процессора не было конденсата, и чтобы не требовалась термоизоляция трубок через которую были бы потери холода и чтобы модули не морозили жидкость в простое зря и не тратили лишнюю энергию.
И по итогу уже можно будет оценить насколько энергозатратна установка в повседневной жизни и уже попробовать разогнать что-нибудь в рамках этих трёх модулей и того железа, что у меня есть.
Ну и последняя третья часть — закупка всего необходимого для полноценной установки, скорее всего нужна будет материнская плата для которой существуют моноблочные водоблоки покрывающие VRM, так как разгон будет очень не слабый. Выбор и закупка корпуса, куда можно установить две помпы и кучу радиаторов и там уже устроим разгон на все деньги. И в итоге должен получится компьютер размером с обычный компьютер, и выглядящий как обычный компьютер, с шумностью обычного компьютера, но с существенно лучшим охлаждением. Как будет в реальности — в текущий момент не известно.