Все что вы хотели знать о кубитах, но боялись спросить

Сколько ждать квантового превосходства?

В середине мая IBM открыла публичный доступ к новому квантовому компьютеру, оперирующему 16 кубитами. Кроме того, для своего коммерческого сервиса квантовых вычислений компания подготовила 17-кубитное устройство с очень низким уровнем ошибок. Ранее у теоретиков был доступ лишь к устройствам из пяти кубитов — новый вычислитель втрое поднимает эту планку.

Обычно квантовые компьютеры ассоциируются с огромным приростом в производительности и решением задач, непосильных даже для суперкомпьютеров. Одновременно с этим квантовые компьютеры — серьезная угроза алгоритмам шифрования. Наступило ли квантовое будущее и стоит ли срочно переходить на новые системы шифрования — одинаково сложные для обычных и для квантовых устройств, — на эти вопросы мы постараемся ответить в новом тексте.

Все что вы хотели знать о кубитах, но боялись спросить

Квантовые вычисления — непростая тема. С просьбой объяснить, что это такое, мы обратились к ученому, который создает квантовые процессоры. Завлабораторией сверхпроводящих метаматериалов МИСиСа, руководитель группы «Сверхпроводящие квантовые цепи» в Российском квантовом центре, профессор Алексей Устинов помог разобраться в том, какова материальная основа единицы квантовой информации — кубита — и как действуют процессоры на базе сверхпроводников.

СЛОВАРЬ

Кубит — квантовый разряд, наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два состояния — 0 и 1, но при этом может находиться в суперпозиции — может принимать одновременно оба значения.

Фотон — фундаментальная частица, квант электромагнитного поля. В виде фотонов испускается и поглощается электромагнитное излучение. Фотон имеет свойства как частицы, так и волны. У него нет ни электрического заряда, ни массы.

Физически кубит на базе сверхпроводников представляет собой пластинку из кремния, на которую нанесены две тонкие, меньше микрона, пленки алюминия. Между ними — диэлектрик из окиси алюминия. В этом месте находится джозефсоновский переход, или контакт, в котором происходит эффект Джозефсона: протекание сверхпроводящего тока через слой диэлектрика, разделяющий два сверхпроводника. Для удобства пластинка из кремния закрепляется на медной подложке.

Почему алюминий

Он становится сверхпроводником при температуре 1,2 К. В сверхпроводнике электрический ток течет без сопротивления — оно равно нулю.

Сверхпроводник по своим физическим свойствам становится системой, минимальная энергия которой хорошо определена, а следующее возможное значение энергии кольца с джозефсоновским переходом отделяется небольшой щелью. Такая система фактически имеет два уровня энергии. Это и есть материальная основа кубита — квантовая система с двумя уровнями энергии, которая нужна для того, чтобы делать вычисления.

Сколько живет кубит

Чтобы проводить вычисления, необходимо управлять переходами с минимального уровня энергии на следующий и удерживать систему на этом уровне как можно дольше.

В отличие от обычных компьютеров, для сверхпроводниковых кубитов потеря кванта энергии — это потеря информации, то есть конец жизни кубита как единицы информации. Квантовая система теряет энергию легко: она улетучивается в пространство в виде фотонов или переходит в тепло — сверхпроводник нагревается, а энергия теряется.

Удержать кубит в возбужденном состоянии — большая технологическая и пока до конца не решенная проблема. В первых экспериментах в Японии в 1999 году кубит жил (удерживал энергию на верхнем уровне) лишь наносекунду. Благодаря исследованиям физиков всего мира за последние годы произошел экспоненциальный рост срока жизни кубитов. Сейчас они живут несколько десятков, иногда даже сотен микросекунд. Рост стал возможен благодаря тому, что ученые тщательно изолируют кубиты от окружения и воздействия неблагоприятных факторов.

Минимальный набор для квантового вычисления — пара кубитов, которая управляется двухкубитными вентилями. Вентили — логические операции по обработке информации («и», «или», «нет» и т. д.), они есть и в обычных компьютерах. Благодаря объединению фотон (читай — энергия и информация) не теряется, а передается от одного кубита к другому.

Переход с минимально возможного уровня энергии на следующий инициируется за счет воздействия на кубит коротким импульсом микроволн с частотой в несколько гигагерцев, что соответствует длине волны в несколько сантиметров. У таких волн энергия фотонов низкая (энергия излучения, напомним, обратно пропорциональна длине волны). Но температурные флуктуации (отклонение от среднего значения случайной величины) могут легко разрушить квантовую систему. Чтобы это не произошло, температура системы должна быть еще ниже, чем это необходимо для того, чтобы сделать алюминий сверхпроводником. Вместо 1 К требуется порядка 20 мК.

Создают и поддерживают такую температуру специальные холодильники, работающие на смеси изотопов гелия. В нашей стране такие есть во ВНИИА, МГТУ, МФТИ, МИСиСе и Российском квантовом центре.

Как избавиться от ошибок

Чтобы кубиты могли взаимодействовать, необходимо объединить их в цепи, по аналогии с транзисторами. Когда кубиты соединены в схему, работающую по алгоритму, в ней можно запустить сложное вычисление.

Создание цепей — задача не только математическая (надо написать алгоритм), но и аппаратная. Нужна электроника, которая может управлять взаимодействием множества кубитов. Для иллюстрации физики приводят такой пример: представьте, что у вас два капризных ребенка. Сложно ими управлять? Сложно, но возможно. А теперь представьте, что у вас их 50. Физикам, как и родителям, нужны все более сложные средства управления квантовыми «капризными детьми».

Помимо самого выполнения вычислений нужно, чтобы итог этих вычислений был корректным. В России безошибочность выполнения однокубитных операций (контролируемых изменений состояний кубитов) — 99,9 %, двухкубитных — 89 %, а точность считывания — 85–90 %. У Google, в лаборатории Джона Мартиниса в Университете Санта-Барбары, у однокубитных операций показатель тот же, у двухкубитных — 99,5 %. По точности считывания лидер с показателем 99 % — лаборатория IBM в Цюрихе.

Для обычных компьютеров задача избавления от ошибок уже решена, для квантовых решение только предстоит найти. Один из вариантов — создать логический кубит. «С помощью некоторых ухищрений (предлагаю не вдаваться в подробности) можно соединить несколько физических кубитов. Объединенные в систему физические кубиты теоретически могут жить бесконечно долго, потому что физические кубиты «умирают» (теряют информацию) в разное время. Здесь используется принцип двух наблюдателей: когда два наблюдателя смотрят на кубит, они одновременно заметят, что ошибка возникла. Как только возникает совпадение этих двух событий, мы говорим: да, произошла ошибка», — ​поясняет Алексей Устинов. Правда, пока ни одна из команд, работающих над квантовыми процессорами на сверхпроводниках, к решению этой задачи на практике не приблизилась.

Как делают кубиты и в чём сложность

Максимально упрощённо: чтобы получить рабочий кубит, нужно взять один атом, максимально его зафиксировать, оградить от посторонних излучений и связать с другим атомом специальной квантовой связью.

Чем больше таких кубитов связано между собой, тем менее стабильно они работают. Для достижения «квантового превосходства» над обычным компьютером нужно не менее 49 кубитов — а это очень неустойчивая система.

Основная сложность — декогеренция. Это когда много кубитов зависят друг от друга и на них может повлиять всё что угодно: космические лучи, радиация, колебания температуры и все остальные явления окружающего мира.

Такой «фазовый шум» — катастрофа для квантового компьютера, потому что он уничтожает суперпозицию и заставляет кубиты принимать ограниченные значения. Квантовый компьютер превращается в обычный — и очень медленный.

С декогеренцией можно бороться разными способами. Например, компания D-Wave, которая производит квантовые компьютеры, охлаждает атомы почти до абсолютного нуля, чтобы отсечь все внешние процессы. Поэтому они такие большие — почти всё место занимает защита для квантового процессора.

Квантовый процессор на девяти кубитах от Google

Квантовые вычисления

Росатом активно участвует в создании российских технологий квантовых вычислений. В 2016 году Госкорпорация вместе с Фондом перспективных исследований и Минобрнуки подписали трехстороннее соглашение по созданию и поддержке совместных лабораторий, где будут разрабатываться технологии, необходимые для создания российского универсального квантового компьютера.

Такое устройство, использующее в своей работе квантовые эффекты, поможет решать задачи обороноспособности России, а также найдет применение в ключевых отраслях экономики и промышленности. Считается, что квантовые компьютеры будут иметь колоссальные преимущества перед традиционными ЭВМ с точки зрения расчета сложных систем и декодирования сколь угодно сложных шифров. Головной организацией этого проекта «Создание технологии обработки информации на основе сверхпроводящих кубитов» является предприятие Росатома «Всероссийский научно-исследовательский институт автоматики имени Духова» (Москва).

Цель Росатома — создание в ближайшие годы 100-кубитного квантового компьютера, сообщил генеральный директор госкорпорации Алексей Лихачев в ходе рабочей встречи с премьер-министром РФ Дмитрием Медведевым летом прошлого года. Сверхпроводящий кубит — простейший квантовый объект, необходимый для создания квантового компьютера.

Почему создание суперкомпьютеров может оказаться под угрозой?

Квантовый компьютер — чрезвычайно полезное изобретение при создании искусственного интеллекта будущего, новых методов криптографии и даже новых типов аккумуляторных батарей. Несмотря на всю универсальность своего применения, устройство может так никогда и не заработать в полную силу. К столь мало обнадеживающим выводам пришел французский исследователь Мишель Дьяконов, который на протяжении многих лет работал над реализацией квантовых вычислений. Ученый считает, что из-за неизбежности случайных ошибок в аппаратном обеспечении устройства, по-настоящему полезные квантовые компьютеры вряд ли когда-либо будут построены.

Для того, чтобы понять, почему создание суперкомпьютеров нового поколения может оказаться под угрозой, нам прежде всего следует разобраться в принципах работы данного вычислительного устройства. Согласно статье, опубликованной на портале theconversation.com, современные компьютеры работают на принципе двоичного кода при хранении данных, в то время как уже созданные квантовые устройства используют систему квантовых битов или кубитов.

Кубиты обладают особыми свойствами: они могут существовать в суперпозиции, являясь одновременно и нулем, и единицей, при этом будучи запутанными между собой даже в том случае, если они находятся на значительном расстоянии друг от друга. Столь необычное поведение не связывается с миром классической физики, так как суперпозиция мгновенно исчезает тогда, когда экспериментатор взаимодействует с квантовым состоянием.

Благодаря суперпозиции, квантовый компьютер со 100 кубитами может одновременно представлять 2100 решений. Для некоторых задач этот экспоненциальный параллелизм может быть использован для создания огромного преимущества в скорости вычислений. Вместе с тем, существует и другой, более узкий подход к квантовым вычислениям, при котором кубиты используются для ускорения задач оптимизации. Так, компания D-Wave Systems, базирующаяся в Канаде, построила системы оптимизации, которые используют кубиты именно для этой цели, хотя некоторые критики утверждают, что полученные в результате системы работают не лучше классических компьютеров.

Квантовые компьютеры компании D-Wave Systems

Несмотря на это, компании и страны вкладывают огромные суммы денег в квантовые вычисления. Известно, что Китай построил новый центр квантовых исследований стоимостью 10 миллиардов долларов США, а Европейский Союз разработал генеральный план квантовых исследований на сумму 1 миллиард евро или 1,1 миллиарда долларов. Новый закон о национальной квантовой инициативе Соединенных Штатов предусматривает выделение 1,2 млрд. долларов США на развитие квантовой информатики в течение пятилетнего периода.

Возможность взлома алгоритмов шифрования является мощным мотивирующим фактором для многих стран мира. Так, знание систем шифрования противника могло бы дать огромное преимущество в разведке, одновременно с этим способствуя проведению новых фундаментальных исследований в области физики, так как современные экспериментальные системы имеют в своем распоряжении лишь менее 100 кубитов. Для достижения полезной вычислительной производительности суперкомпьютера нам, вероятно, понадобятся машины с сотнями тысяч кубитов. Для того, чтобы устройства функционировали правильно, они должны исправлять все мелкие случайные ошибки в программном обеспечении. В квантовом компьютере такие ошибки возникают из-за неидеальных элементов схемы и взаимодействия кубитов с окружающей их средой. По этим причинам кубиты могут потерять когерентность буквально за долю секунды, что может привести к ошибочным результатам работы компьютера.

Иными словами, хотя квантовые суперкомпьютеры и имеют право на существование, правильность их вычислений может попасть под большой вопрос. А как считаете вы, сможет ли человек однажды подчинить себе квантовые технологии? Поделитесь своим мнением с единомышленниками в нашем официальном Telegram-чате.

Другие возможности компьютеров

На сегодняшний день самый мощный квантовый компьютер — на 72 кубита — принадлежит компании Google. С помощью построенных компьютеров инженеры уже открыли некоторые эффекты, которые были недоступны на обычных устройствах, тем самым достигнув квантового превосходства.

Недавно национальная исследовательская лаборатория министерства энергетики США в Оук-Ридже запустила суперкомпьютер Summit, производительность которого в пиковые моменты может достигать 200 млн млрд (квадриллионов) операций в секунду. На сегодняшний день это самый мощный суперкомпьютер в мире.

В российском Иннополисе недавно установили суперкомпьютер, который может совершать 960 трлн операций в секунду. Компьютер доступен и студентам для выполнения курсовых и дипломных проектов в области искусственного интеллекта, глубокого обучения и параллельных вычислений. опубликовано econet.ru

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector