Внутренняя память компьютера, ее свойства и характеристики

Какая бывает память

Если хотите понимать, как работают компьютеры, полезно понимать, как устроена их память. Когда вам будут говорить, что «не хватает памяти», вы будете точно знать, какой именно памяти не хватает и что с этим делать.

Компьютер, телефон или любое умное устройство работает за счёт программ. Программы — это команды для процессора. Чтобы процессор знал, какую команду выполнить следующей, он должен иметь под рукой всю программу. Для этого программы сидят в оперативной памяти.

Оперативной память называется потому, что доступ к ней должен происходить очень быстро и в любом порядке. Представьте, что это ваш рабочий стол: вы на него сложите все приборы и бумаги, которые нужны для работы прямо сейчас.

Технически оперативная память — это микросхема или, по-другому, чип. Для пользователей она выглядит как чёрный прямоугольник, хотя сам этот прямоугольник — это лишь защитный корпус. Внутри под корпусом массивы из миллионов транзисторов.

Модуль оперативной памяти, которые вставляют в компьютеры

Модуль оперативной памяти, которые вставляют в компьютеры. Чёрные прямоугольники (в том числе под наклейкой) — те самые чипы памяти. В каждом чипе — 512 МБ оперативной памяти.

Чем больше объём оперативной памяти, тем проще компьютеру запускать одновременно несколько программ. Если компьютеру не хватает оперативы, он либо об этом сообщает, либо начинает складировать часть оперативной памяти на диск, и тогда общая скорость работы снижается.

Особенность оперативной памяти в том, что данные в ней зависят от внешнего электричества. Если компьютер выключить, то всё содержимое оперативной памяти исчезнет. Поэтому компьютеру при включении требуется некоторое время, чтобы всё загрузить обратно и запустить все нужные программы.

Особенности

Независимо от того, о чем идёт речь, нам необходимы критерии для определения качества запоминающего устройства. Назовём главные характеристики внутренней памяти компьютера:

  1. Общий объём. Он играет немаловажную роль. От него зависит, сколько информации можно разместить одновременно в кэше, а значит, и быстродействие компьютера. Иногда процессору нужно хранить обширные объёмы данных. При малых размерах памяти они просто не поместятся, и приложение будет «тормозить».
  2. Быстродействие. Оно же — время доступа. Определяет, насколько быстро происходит взаимодействие центрального процессора и памяти. От этого параметра зависит, как скоро будет проходить процесс записи-считывания байт данных в запоминающее устройство. В отличие от объёма памяти, пользователь не способен повышать этот параметр сверх конретного уровня, поскольку он определяется конструктивными особенностями, а также существующими технологиями и интерфейсом подключения.

устройства внутренней памяти компьютера

Жажда скорости

SDRAMDouble data rate synchronous dynamic random access memory (синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных) single data rate SDRAM

Тип DRAM Обычная частота чипа Тактовый сигнал ввода-вывода Частота передачи данных
SDR 100 МГц 100 МГц 100 MT/s
DDR 100 МГц 100 МГц 200 MT/s
DDR2 200 МГц 400 МГц 800 MT/s
DDR3 200 МГц 800 МГц 1600 MT/s
DDR4 400 МГц 1600 МГц 3200 MT/s

 Сверху вниз: DDR-SDRAM, DDR2, DDR3, DDR4

Тип DRAM Обычная частота памяти Тактовый сигнал ввода-вывода Частота передачи данных
GDDR 250 МГц 250 МГц 500 MT/s
GDDR2 500 МГц 500 МГц 1000 MT/s
GDDR3 800 МГц 1600 МГц 3200 MT/s
GDDR4 1000 МГц 2000 МГц 4000 MT/s
GDDR5 1500 МГц 3000 МГц 6000 MT/s
GDDR5X 1250 МГц 2500 МГц 10000 MT/s
GDDR6 1750 МГц 3500 МГц 14000 MT/s

В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям. В современной компьютерной технике часто используются физические свойства полупроводников, когда прохождение тока через полупроводник или его отсутствие трактуются как наличие логических сигналов 0 или 1. Устойчивые состояния, определяемые направлением намагниченности, позволяют использовать для хранения данных разнообразные магнитные материалы. Наличие или отсутствие заряда в конденсаторе также может быть положено в основу системы хранения. Отражение или рассеяние света от поверхности CD, DVD или Blu-ray-диска также позволяет хранить информацию.

Роль оперативной памяти в общем «оркестре» компонентов компьютера

Компьютерная память

Работу компьютера следует рассматривать как «оркестр». «Музыкантами» в нем являются все его программные и аппаратные составляющие, в том числе центральный процессор, жесткий диск и операционная система, выполняющая, как известно нашим читателям, пять важнейших невидимых задач. Оперативная память, которую нередко называют просто «памятью» находится в числе наиболее важных компонентов компьютера. С того момента как вы включили компьютер и до того мгновения, когда вы его отключите, процессор будет непрерывно обращаться к памяти. Давайте рассмотрим типичный сценарий работы любого компьютера.

Вы включили компьютер. Он, в свою очередь, загрузил данные из постоянной памяти (ROM) и начал самотестирование при включении (power-on self-test, POST). Компьютер проверяет сам себя и определяет, исправен ли он и готов ли к новому трудовому сеансу. Целью этого этапа работы является проверка того, что все основные компоненты системы работают корректно. В ходе самотестирования контроллер памяти посредством быстрой операции чтения/записи проверяет все ячейки памяти на наличие или отсутствие ошибок. Процесс проверки выглядит так: бит информации записывается в память по определенному адресу, а затем считывается оттуда.

Компьютер загружает из ПЗУ базовую систему ввода-вывода, более известную по английской аббревиатуре BIOS. В этом «биосе» содержится базовая информация о накопителях, порядке загрузки, безопасности, автоматическом распознавании устройств (Plug and Play) и некоторые иные сведения.

Затем наступает черед загрузки операционной системы. Она загружается в оперативную память компьютера с жесткого диска (чаще всего в современном компьютере всё обстоит именно так, но возможны и иные сценарии). Важные компоненты операционной системы обычно находятся в оперативной памяти компьютера на протяжении всего времени работы с ним. Это дает центральному процессору возможность немедленного доступа к операционной системе, что повышает производительность и функциональность всего компьютера в целом.

Когда вы открываете приложение, оно записывается всё в ту же оперативную память. Объем памяти этого типа в наши дни хоть и велик, но при этом все равно значительно уступает ёмкости жесткого диска. В целях экономии оперативной памяти некоторые приложения записывают в нее только свои важнейшие компоненты, а остальные «подгружают» с жесткого диска по мере необходимости. Каждый файл, который загружается работающим приложением, тоже записывается в оперативную память.

Что происходит, когда вы сохраняете файл и закрываете приложение? Файл записывается на жесткий диск, а приложение «выталкивается» из оперативной памяти. То есть и само приложение, и связанные с ним файлы удаляются из оперативной памяти. Тем самым освобождается место для новой информации: других приложений и файлов. Если измененный файл не был сохранен перед удалением из временного хранилища, все изменения будут потеряны.

Из вышесказанного следует, что каждый раз, когда что-то загружается или открывается, оно помещается в оперативную память, то есть во временное хранилище данных. Центральному процессору проще получить доступ к информации из этого хранилища. Процессор запрашивает из оперативной памяти необходимые ему в процессе вычислений данные.

Всё это звучит несколько суховато и не дает полного представления о масштабах событий. Но поистине впечатляюще выглядит то, что в современных компьютерах обмен информацией между центральным процессором и оперативной памятью совершается миллионы раз в секунду.

Но запоминающие устройства не исчерпываются одной только оперативной памятью. Теперь, когда мы знаем, какое место занимает каждый тип памяти в общей картине современного цифрового устройства, нам осталось рассмотреть и другие разновидности хранилищ информации. И поэтому…

Жажда скорости

У всех DRAM есть центральный тактовый сигнал ввода-вывода (I/O, input/output) — напряжение, постоянно переключающееся между двумя уровнями; он используется для упорядочивания всего, что выполняется в чипе и шинах памяти.

Если бы мы вернулись назад в 1993 год, то смогли бы приобрести память типа SDRAM (synchronous, синхронная DRAM), которая упорядочивала все процессы с помощью периода переключения тактового сигнала из низкого в высокое состояние. Так как это происходит очень быстро, такая система обеспечивает очень точный способ определения времени выполнения событий. В те времена SDRAM имела тактовые сигналы ввода-вывода, обычно работавшие с частотой от 66 до 133 МГц, и за каждый такт сигнала в DRAM можно было передать одну команду. В свою очередь, чип за тот же промежуток времени мог передать 8 бит данных.

Быстрое развитие SDRAM, ведущей силой которого был Samsung, привело к созданию в 1998 году её нового типа. В нём передача данных синхронизировалась по повышению и падению напряжения тактового сигнала, то есть за каждый такт данные можно было дважды передать в DRAM и обратно.

Как же называлась эта восхитительная новая технология? Double data rate synchronous dynamic random access memory (синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных). Обычно её просто называют DDR-SDRAM или для краткости DDR.

Память DDR быстро стала стандартом (из-за чего первоначальную версию SDRAM переименовали в single data rate SDRAM, SDR-DRAM) и в течение последующих 20 лет оставалась неотъемлемой частью всех компьютерных систем.

Прогресс технологий позволил усовершенствовать эту память, благодаря чему в 2003 году появилась DDR2, в 2007 году — DDR3, а в 2012 году — DDR4. Каждая новая версия обеспечивала повышение производительности благодаря ускорению тактового сигнала ввода-вывода, улучшению систем сигналов и снижению энергопотребления.

DDR2 внесла изменение, которое мы используем и сегодня: генератор тактовых сигналов ввода-вывода превратился в отдельную систему, время работы которой задавалось отдельным набором синхронизирующих сигналов, благодаря чему она стала в два раза быстрее. Это аналогично тому, как CPU используют для упорядочивания работы тактовый сигнал 100 МГц, хотя внутренние синхронизирующие сигналы работают в 30-40 раз быстрее.

DDR3 и DDR4 сделали шаг вперёд, увеличив скорость тактовых сигналов ввода-вывода в четыре раза, но во всех этих типах памяти шина данных для передачи/получения информации по-прежнему использовала только повышение и падение уровня сигнала ввода-вывода (т.е. удвоенную частоту передачи данных).

Сами чипы памяти не работают на огромных скоростях — на самом деле, они шевелятся довольно медленно. Частота передачи данных (измеряемая в миллионах передач в секунду — millions of transfers per second, MT/s) в современных DRAM настолько высока благодаря использованию в каждом чипе нескольких банков; если бы на каждый модуль приходился только один банк, всё работало бы чрезвычайно медленно.

Тип DRAM Обычная частота чипа Тактовый сигнал ввода-вывода Частота передачи данных
SDR 100 МГц 100 МГц 100 MT/s
DDR 100 МГц 100 МГц 200 MT/s
DDR2 200 МГц 400 МГц 800 MT/s
DDR3 200 МГц 800 МГц 1600 MT/s
DDR4 400 МГц 1600 МГц 3200 MT/s

Каждая новая версия DRAM не обладает обратной совместимостью, то есть используемые для каждого типа DIMM имеют разные количества электрических контактов, разъёмы и вырезы, чтобы пользователь не мог вставить память DDR4 в разъём DDR-SDRAM.

Сверху вниз: DDR-SDRAM, DDR2, DDR3, DDR4

DRAM для графических плат изначально называлась SGRAM (synchronous graphics, синхронная графическая RAM). Этот тип RAM тоже подвергался усовершенствованиям, и сегодня его для понятности называют GDDR. Сейчас мы достигли версии 6, а для передачи данных используется система с учетверённой частотой, т.е. за тактовый цикл происходит 4 передачи.

Тип DRAM Обычная частота памяти Тактовый сигнал ввода-вывода Частота передачи данных
GDDR 250 МГц 250 МГц 500 MT/s
GDDR2 500 МГц 500 МГц 1000 MT/s
GDDR3 800 МГц 1600 МГц 3200 MT/s
GDDR4 1000 МГц 2000 МГц 4000 MT/s
GDDR5 1500 МГц 3000 МГц 6000 MT/s
GDDR5X 1250 МГц 2500 МГц 10000 MT/s
GDDR6 1750 МГц 3500 МГц 14000 MT/s

Кроме более высокой частоты передачи, графическая DRAM обеспечивает дополнительные функции для ускорения передачи, например, возможность одновременного открытия двух страниц одного банка, работающие в DDR шины команд и адресов, а также чипы памяти с гораздо большими скоростями тактовых сигналов.

Какой же минус у всех этих продвинутых технологий? Стоимость и тепловыделение.

Один модуль GDDR6 примерно вдвое дороже аналогичного чипа DDR4, к тому же при полной скорости он становится довольно горячим — именно поэтому графическим картам с большим количеством сверхбыстрой RAM требуется активное охлаждение для защиты от перегрева чипов.

Определение

Расшифровка англоязычного варианта выглядит как Random Access Memory. Переводится это как память с произвольным доступом. А вот русскоязычная аббревиатура обозначает Оперативное запоминающее устройство, что несколько ближе к сути дела.

Куда как чаще пользователь встречает варианты названия «оперативка», «РАМка» или просто «память». Кстати, последний термин крайне неточный, поскольку может подразумевать:

  • объём жёсткого диска;
  • объём оперативной памяти;
  • объём отдельных локальных дисков;
  • объём памяти видеочипа.

Поэтому вариант «оперативка» или «оператива» получил более широкое распространение.

Назначение

Вне зависимости от названия функции элемента не меняются. Он предоставляет для операционной системы и программ доступ к часто используемым компонентам (поэтому считается, что компоненты загружаются в оперативную память) с целью повышения быстродействия.

Этим полный функционал RAM не заканчивается. Также она участвует в загрузке операционной системы. Отвечает за запись распакованных компонентов, которые начинают выполняться в ней и продолжают свою распаковку в процессе дальнейшей деятельности.

Звучит сложно, а на деле при загрузке Windows файл записывается с жёсткого диска в ОЗУ откуда уже начинает исполняться, вызывает распаковку других данных и удаляется из этой памяти.

Принцип работы

Рассматривается, по какому принципу происходит работа элемента, а не физические процессы, которые при этом протекают. Основное отличие «оперативки» от постоянной памяти «жёсткого диска» заключается в том, что из первой данные постоянно удаляются.

Предположим, что была вызвана программа:

  1. В ОЗУ загружается файл, содержащий порядок загрузки компонентов программы.
  2. Исполняемый файл обращается к ОЗУ, сверяясь со списком и ставя галочки о проделанной работе.
  3. Как только все галочки собраны временный файл удаляется и на его место записывается что-то другое.

Постоянные циклы записи и удаления характерны работе RAM. Количество таких циклов за несколько минут работы в разы превышает количество аналогичных действий на HDD.

Второй особенностью является случайное место записи этих документов. В «оперативке» царит полный хаос и стройной структурой там не пахнет: где есть место, там документы и записаны.

Единицы измерения

Постоянство технологического прогресса привело к тому, что 30 лет назад принято было измерять объём ОЗУ в кб или единицах Мб. Спустя же указанное время единица измерения (особенно сильный скачок произошёл с 2004-го по 2010 год) сместилась к Гб. Сейчас никого не удивить объёмом ОЗУ в 16 Гб, а под отдельные задачи принято выделять до 256 Гб.

Средний же, ПК обычного пользователя оснащается 4-8 Гб ОЗУ (число всегда должно быть кратно двум – об этом далее). Для любителей провести время за игрой ориентиром служит всё-таки 32 Гб, хотя при умелом обращении можно спокойно играть и с 4 Гб «на борту» (если в системных требованиях не требуется больше 8 Гб).

Вывод

Прочитав эту статью, вы узнали, что такое внутренняя память компьютера, каково её строение, виды и характеристики. В жизни это может мало пригодиться, разве что для сдачи экзаменов в университете или общего самообразования.

Похожие статьи

Виды памяти компьютера – это именно тот вопрос, изучение которого начинающие пользователи часто откладывают “на потом”. А зря. Это очень мешает правильному пониманию функционирования системы в целом, а значит вам сложнее будет найти общий язык с вашим “железным другом”. Я уверена, что изучение программной части вашего компьютера необходимо начинать с хотя бы поверхностного взгляда в металлические дебри. Поэтому сегодня мы пообщаемся о памяти вообще: какая она бывает, как классифицируется и чем она от самой себя отличается.

Начнем с самого понятного. У нас, у людей то есть, тоже есть своя память, и она тоже неодинаковая. Понятно, что она бывает зрительной, тактильной, слуховой и пр., но сейчас мы немного не об этом. С точки зрения механизмов функционирования, память бывает оперативной и долговременной. У компьютера где-то приблизительно также.

Человеческая оперативная память включается, в ситуациях, когда запоминать информацию нужно ненадолго, например, чтобы что-то сделать и сразу забыть. Такая информация хранится в наших головах от 5 часов до трех месяцев. В железе все очень похоже. Компьютерная оперативная память называется RAM (Random Access Memory) и существует для хранения информации, которая может понадобиться процессору и работающим в данный момент программам. Информация может сохраняться в такой памяти до перезагрузки компьютера или до завершения работы конкретной программы.

Постоянная память – это “запомнил на всю жизнь”. Конечно, все случайно можно забыть, но и у компьютера жесткий диск может сломаться. Постоянная память хранит информацию, которая может пригодиться в любой момент на протяжении длинных промежутков времени или всей жизни вообще. Компьютерный аналог такой памяти – жесткий диск. Он всегда намного большего, чем оперативная память объема, и всегда медленнее последней. Зато на нем можно сохранять огромнейшие объемы информации, практически не занимая полезное пространство в квартире. Как-то даже странно сравнивать, например, книжный шкаф с обычной флешкой.

Кроме распределения на постоянную и оперативную, память компьютера еще можно разделить на внутреннюю и внешнюю. Здесь все просто: все, что находится внутри системного блока – внутренняя память, все остальное, что мы покупаем отдельно, носим с собой и подключаем к разным системам (флешки, CD/ DVD диски, карты памяти и пр) – внешняя память. Об этом пойдет речь немного позже, а сегодня нас интересует, какая бывает внутренняя память компьютера, и все, что с ней может быть связано.

Развитие

Внутренняя память компьютера развивалась постепенно, проходя множество этапов. Говоря об ОП, можно выделить следующие её виды в порядке совершенствования:

  1. SIMM — самый первый прообраз оперативной памяти персонального компьютера. Имел 30 контактов общей длиной в 89 миллиметров. В настоящий момент найти такую планку практически невозможно.
  2. SIMM на 72 контакта являлась следующим шагом в развитии, но имела ещё большие размеры — примерно 103 миллиметра.
  3. DIMM — оперативная память, которую застали обычные пользователи. Была популярна вплоть до 2001 года.
  4. После всех предыдущих этапов наступила эра памяти формата DDR (184 контакта). Эта технология в корне меняет подход к проектированию. Вместо ускорения частоты обмена данными в ней увеличивается количество данных, передаваемых за один такт.
  5. DDR2 — имеющая 204 контакта, она должна была увеличить скорость работы и взаимодействия с процессором в 2 раза по сравнению со своим предшественником.
  6. DDR3 — очередной виток эволюции памяти, имеющей повышенные характеристики.
  7. DDR4 — вышедшая во втором квартале 2014 года в массовые продажи оперативная память. Имеет 288 контактов и увеличенную в 2 раза пропускную способность.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector