Внешнее и внутреннее устройство компьютера
В этой статье, для начинающих пользователей, я расскажу про устройство компьютера и из чего он состоит. Узнаем основные характеристики внешних и внутренних устройств и какие функции они выполняют.
ПК состоит из отдельных устройств и модулей. Одни компоненты, так называемое “железо”, комплектующие или аппаратное обеспечение (от англ. hardware), находятся внутри компьютерного корпуса, другие устройства уже подключаются к нему и называются внешними или периферией.
Все устройства можно условно поделить на 4 типа. Ввода, вывода, обработки и хранения информации.
Далее разберемся со всем этим более подробно.
Разновидности внешней памяти
В зависимости от принципа записи, хранения и считывания информации ВЗУ разделяются на механические и немеханические. К механическим внешним запоминающим устройствам (внешней памяти) относятся накопители на гибких (FDD, дискеты), жёстких (винчестеры, HDD) и оптических носителях.
Ко вторым – устройства без механических частей – флеш-память. По способу чтения/записи внешняя память бывает: оптической, магнитной и комбинированной. Она характеризуется: объёмом, стоимостью за гигабайт, долговечностью, надёжностью, временем доступа, скоростью чтения и записи.
Внутренняя память
Характерными особенностями внутренней памяти по сравнению с внешней являются высокое быстродействие и ограниченный объем. Физически внутренняя память компьютера представляет собой интегральные микросхемы (чипы), которые размещаются в специальных подставках (гнездах) на плате. Чем больше размер внутренней памяти, тем более сложную задачу и с большей скоростью может решить компьютер.
Постоянная память хранит очень важную для нормальной работы компьютера информацию. В частности, в ней содержатся программы, необходимые для проверки основных устройств компьютера, а также для загрузки операционной системы. Очевидно, что изменять эти программы нельзя, так как при любом вмешательстве сразу станет невозможным последующее использование компьютера. Поэтому разрешено только чтение хранимой там постоянно информации. Это свойство постоянной памяти объясняет часто используемое ее английское название Read Only Memory (ROM) — память только для чтения.
Вся записанная в постоянную память информация сохраняется и после выключения компьютера, так как микросхемы являются энергонезависимыми. Запись информации в постоянную память происходит обычно только один раз — при производстве соответствующих чипов фирмой-изготовителем.
Постоянная память — устройство для долговременного хранения программ и данных.
Существует две основные разновидности микросхем постоянной памяти: однократно программируемые (после записи содержимое памяти не может быть изменено) и многократно программируемые. Изменение содержимого многократно программируемой памяти производится путем электронного воздействия.
Оперативная память хранит информацию, необходимую для выполнения программ в текущем сеансе работы: исходные данные, команды, промежуточные и конечные результаты. Эта память работает только при включенном электропитании компьютера. После его выключения содержимое оперативной памяти стирается, так как микросхемы являются энергозависимыми устройствами.
Оперативная память — устройство для хранения программ и данных, которые обрабатываются процессором в текущем сеансе работы.
Устройство оперативной памяти обеспечивает режимы записи, считывания и хранения информации, причем в любой момент времени возможен доступ к любой ячейке памяти. Часто оперативную память называют RAM (англ. Random Access Memory — память с произвольным доступом).
Если необходимо хранить результаты обработки длительное время, то следует воспользоваться каким-нибудь внешним запоминающим устройством.
ОБРАТИТЕ ВНИМАНИЕ!
При выключении компьютера вся находящаяся в оперативной памяти информация стирается.
Оперативная память характеризуется высоким быстродействием и относительно малой емкостью.
Микросхемы оперативной памяти монтируются на печатной плате. Каждая такая плата снабжена контактами, расположенными вдоль нижнего края, число которых может быть 30, 72 или 168 (рисунок 18.2). Для подключения к другим устройствам компьютера такая плата вставляется своими контактами в специальный разъем (слот) на системной плате, расположенной внутри системного блока. Системная плата имеет несколько разъемов для модулей памяти, суммарный объем которых может принимать ряд фиксированных значений, например 64, 128, 256 Мбайт и более.
Рис. 18.2. Микросхемы (чипы) оперативной памяти
Кэш-память (англ. cache — тайник, склад) служит для увеличения производительности компьютера.
Кэш-память используется при обмене данными между микропроцессором и оперативной памятью. Алгоритм ее работы позволяет сократить частоту обращений микропроцессора к оперативной памяти и, следовательно, повысить производительность компьютера.
Существует два типа кэш-памяти: внутренняя (8-512 Кбайт), которая размещается в процессоре, и внешняя (от 256 Кбайт до 1 Мбайт), устанавливаемая на системной плате.
Компьютер тормозит. У меня мало памяти?
Компьютер может тормозить по множеству причин. Вот какие причины могут быть связаны с памятью:
- Всю оперативную память заняла прожорливая или плохо оптимизированная программа.
- На жёстком диске не хватает места для временных файлов.
- SSD заполнен почти полностью, отчего он начинает естественным образом тормозить.
Что делать: перезагрузить, очистить корзину, поискать лишние большие файлы.
А мне всегда чего-то не хватает…
Все изложенное выше наглядно иллюстрирует тот простой факт, что каким бы гениальным ни было изобретение, оно, кроме всего прочего, должно быть своевременным. IBM Simon был обречен на провал, так как на момент его появления у людей не было потребности в абсолютной мобильности. Магнитооптические диски стали неплохой альтернативой HDD, однако остались уделом профессионалов и энтузиастов, так как на тот момент массовому потребителю куда важнее были скорость, удобство и, разумеется, дешевизна, ради которых рядовой покупатель был готов пожертвовать надежностью. Те же ZIP при всех преимуществах так и не смогли стать подлинным мейнстримом из-за того, что людям не особо хотелось разглядывать каждую дискету под лупой, выискивая заусенцы.
Именно поэтому естественный отбор в конечном счете четко разграничил рынок на два параллельных направления: съемные носители информации (CD, DVD, Blu-Ray), флеш-накопители (для хранения малых объемов данных) и внешние жесткие диски (для больших объемов). Среди последних негласным стандартом стали компактные 2,5-дюймовые модели в индивидуальных корпусах, появлению которых мы обязаны в первую очередь ноутбукам. Другая причина их популярности — экономичность: если классические 3,5-дюймовые HDD во внешнем кейсе сложно было назвать «портативными», при этом они в обязательном порядке требовали подключения дополнительного источника питания (а значит, с собой еще необходимо было таскать адаптер), то максимум, что могло понадобиться 2,5-дюймовым накопителям — дополнительный USB-разъем, а более поздним и энергоэффективным моделям не требовалось и этого.
Кстати, появлению миниатюрных HDD мы обязаны PrairieTek — небольшому предприятию, основанному Терри Джонсоном в 1986 году. Спустя всего три года с момента открытия PrairieTek представила первый в мире 2,5-дюймовый винчестер емкостью 20 МБ, получивший название PT-220. На 30% более компактный по сравнению с десктопными решениями, накопитель имел высоту всего 25 мм, став оптимальным вариантом для использования в ноутбуках. К сожалению, даже будучи пионерами рынка миниатюрных HDD, PrairieTek так и не смогли завоевать рынок, допустив фатальную стратегическую ошибку. Наладив производство PT-220, они сосредоточили усилия на дальнейшей миниатюризации, вскоре выпустив модель PT-120, которая при той же емкости и скоростных характеристиках имела толщину всего 17 мм.
2,5-дюймовый жесткий диск второго поколения PrairieTek PT-120
Просчет заключался в том, что, пока инженеры PrairieTek сражались за каждый миллиметр, конкуренты в лице JVC и Conner Peripherals наращивали объем винчестеров, и это оказалось решающим в таком неравном противостоянии. Пытаясь успеть на уходящий поезд, PrairieTek включилась в гонку вооружений, подготовив модель PT-240, вмещавшую 42,8 МБ данных и отличающуюся рекордно низким по тем временам энергопотреблением — всего 1,5 Вт. Но увы, даже это не спасло компанию от разорения, и в результате уже в 1991 году она прекратила свое существование.
История PrairieTek — еще одна наглядная иллюстрация того, как технические достижения, какими бы значительными они ни казались, в силу своей несвоевременности могут быть попросту невостребованы рынком. В начале 90-х потребитель еще не был избалован ультрабуками и сверхтонкими смартфонами, поэтому острой потребности в подобных дисках не было. Достаточно вспомнить первый планшет GridPad, выпущенный GRiD Systems Corporation в 1989 году: «портативное» устройство весило более 2 кг, а его толщина достигала 3,6 см!
GridPad — первый в мире планшет
И такой «малыш» в те времена считался вполне компактным и удобным: конечный пользователь попросту не видел ничего лучше. В то же время куда острее стоял вопрос дискового пространства. Тот же GridPad, к примеру, вообще не имел жесткого диска: хранение информации было реализовано на базе RAM-чипов, заряд в которых поддерживался встроенными аккумуляторами. На фоне подобных устройств появившийся позже Toshiba T100X (DynaPad) выглядел настоящим чудом уже благодаря тому, что нес на борту полноценный жесткий диск емкостью 40 МБ. То, что «мобильное» устройство имело толщину 4 сантиметра, мало кого смущало.
Планшет Toshiba T100X, более известный в Японии под названием DynaPad
Но, как известно, аппетит приходит во время еды. С каждым годом запросы пользователей росли, и удовлетворить их становилось все сложнее. По мере того, как емкость и быстродействие носителей информации увеличивались, все больше людей стало задумываться о том, что мобильные устройства могли бы быть и покомпактнее, да и возможность иметь в своем распоряжении переносной накопитель, способный вместить все нужные файлы, пришлась бы как нельзя кстати. Иными словами, на рынке появился спрос на принципиально иные с точки зрения удобства и эргономики девайсы, который было необходимо удовлетворить, и противостояние IT-компаний продолжилось с новой силой.
Здесь стоит вновь обратиться к сегодняшнему эпиграфу. Эра твердотельных накопителей началась задолго до нулевых: первый прототип флеш-памяти был создан инженером Фудзио Масуокой в недрах корпорации Toshiba еще в 1984 году, а первый коммерческий продукт на ее основе в лице Digipro FlashDisk появился на рынке уже в 1988-м. Чудо техники вмещало 16 мегабайт данных, а его цена составляла 5000 долларов США.
Digipro FlashDisk — первый коммерческий SSD-накопитель
Новый тренд поддержала Digital Equipment Corporation, представившая в начале 90-х 5,25-дюймовые устройства серии EZ5x с поддержкой интерфейсов SCSI-1 и SCSI-2. Не осталась в стороне и израильская компания M-Systems, анонсировавшая в 1990 году семейство твердотельных накопителей под названием Fast Flash Disk (или FFD), уже более-менее напоминавших современные: SSD имели формат 3,5 дюйма и могли вмещать от 16 до 896 мегабайт данных. Первая модель, получившая название FFD-350, увидела свет в 1995 году.
M-Systems FFD-350 на 208 МБ — прообраз современных SSD
В отличие от традиционных винчестеров, SSD были куда компактнее, обладали более высокой производительностью и, что главное, устойчивостью к ударам и сильной вибрации. Потенциально это делало их практически идеальными кандидатами для создания мобильных накопителей, если бы не одно «но»: высокие цены на единицу хранения информации, из-за чего подобные решения оказались практически непригодными для потребительского рынка. Они пользовались популярностью в корпоративной среде, применялись в авиации при создании «черных ящиков», устанавливались в суперкомпьютеры научно-исследовательских центров, однако о создании розничного продукта на тот момент не могло быть и речи: их никто не стал бы покупать даже в том случае, если бы какая-либо корпорация решилась продавать подобные накопители по себестоимости.
Но изменения рынка не заставили себя долго ждать. Развитию потребительского сегмента съемных SSD-накопителей в немалой степени поспособствовала цифровая фотография, ведь именно в данной отрасли ощущалась острая нехватка компактных и энергоэффективных носителей информации. Судите сами.
Первый в мире цифровой фотоаппарат появился (вновь вспоминаем слова Екклезиаста) еще в декабре 1975 года: его изобрел Стивен Сассон, инженер компании Eastman Kodak Company. Опытный образец состоял из нескольких десятков печатных плат, оптического блока, заимствованного у Kodak Super 8, и магнитофона (фотографии записывались на обычные аудиокассеты). В качестве источника питания для камеры использовались 16 никель-кадмиевых батарей, а весило все это добро 3,6 кг.
Первый прототип цифрового фотоаппарата, созданный Eastman Kodak Company
Разрешение ПЗС-матрицы такого «малыша» составляло всего 0,01 мегапикселя, что позволяло получать кадры 125×80 пикселей, причем на формирование каждого фото уходило 23 секунды. С учетом столь «впечатляющих» характеристик подобный агрегат проигрывал по всем фронтам традиционным пленочным зеркалкам, а значит, о создании коммерческого продукта на его основе не могло быть и речи, хотя в дальнейшем изобретение было признано одной из важнейших вех в истории развития фотографии, а сам Стив был официально включен в Зал славы потребительской электроники (Consumer Electronics Hall of Fame).
Спустя 6 лет инициативу у Kodak перехватила Sony, анонсировав 25 августа 1981 года беспленочный видеофотоаппарат Mavica (название является аббревиатурой от Magnetic Video Camera).
Опытный образец цифрового фотоаппарата Sony Mavica
Камера от японского гиганта выглядела куда интереснее: опытный образец использовал ПЗС-матрицу размером 10 на 12 мм и мог похвастаться максимальным разрешением в 570 х 490 пикселей, а запись велась на компактные 2-дюймовые дискеты Mavipack, которые были способны вместить от 25 до 50 кадров в зависимости от режима съемки. Все дело в том, что формируемый кадр состоял из двух телевизионных полей, каждое из которых записывалось как композитное видео, причем имелась возможность фиксировать как оба поля сразу, так и только одно. В последнем случае разрешение кадра падало в 2 раза, но зато и весила такая фотография вдвое меньше.
Изначально Sony планировала начать серийное производство Mavica в 1983 году, а розничная цена на камеры должна была составить $650. На практике первые промышленные образцы появились лишь в 1984 году, а коммерческая реализация проекта в лице Mavica MVC-A7AF и Pro Mavica MVC-2000 увидела свет лишь в 1986-м, причем камеры стоили практически на порядок дороже, чем планировалось изначально.
Цифровой фотоаппарат Sony Pro Mavica MVC-2000
Несмотря на баснословную цену и инновационность, назвать первые Mavica идеальным решением для профессионального использования не поворачивался язык, хотя в определенных ситуациях такие фотоаппараты оказывались практически идеальным решением. Так, например, репортеры телеканала CNN использовали Sony Pro Mavica MVC-5000 при освещении событий 4 июня на площади Тяньаньмэнь. Усовершенствованная модель получила две независимые ПЗС-матрицы, одна из которых формировала яркостный видеосигнал, а другая — цветоразностный. Такой подход позволил отказаться от использования цветного фильтра Байера и повысить горизонтальное разрешение до 500 ТВЛ. Однако главным преимуществом фотокамеры стала поддержка прямого подключения к модулю PSC-6, позволяющему передавать полученные снимки по радиоканалу напрямую в редакцию. Именно благодаря этому CNN смогли первыми опубликовать репортаж с места событий, а Sony впоследствии даже получила специальную премию «Эмми» за вклад в развитие цифровой передачи новостных фотографий.
Sony Pro Mavica MVC-5000 — та самая камера, благодаря которой Sony стала лауреатом премии «Эмми»
Но что, если фотографу предстоит длительная командировка вдали от цивилизации? В таком случае он мог взять с собой один из замечательных фотоаппаратов Kodak DCS 100, увидевших свет в мае 1991 года. Монструозный гибрид малоформатной зеркальной камеры Nikon F3 HP с цифровой приставкой DCS Digital Film Back, оснащенной вайндером, соединялся с внешним блоком хранения данных Digital Storage Unit (его приходилось носить на плечевом ремне) с помощью кабеля.
Цифровой фотоаппарат Kodak DCS 100 — воплощение «компактности»
Kodak предлагал две модели, каждая из которых имела несколько вариаций: цветную DCS DC3 и черно-белую DCS DM3. Все фотоаппараты линейки оснащались матрицами с разрешением 1,3 мегапикселя, однако отличались размером буфера, который определял максимально допустимое количество кадров при серийной съемке. Например, модификации с 8 МБ на борту могли снимать со скоростью 2,5 кадра в секунду сериями по 6 кадров, а более продвинутые, 32-мегабайтные, допускали длину серии в 24 кадра. В случае превышения данного порога скорость съемки падала до 1 кадра за 2 секунды до тех пор, пока буфер полностью не очищался.
Что же касается блока DSU, то он был оснащен 3,5-дюймовым жестким диском на 200 МБ, способным вместить от 156 «сырых» фото до 600 сжатых с помощью аппаратного JPEG-конвертера (докупался и устанавливался дополнительно), и ЖК-дисплеем для просмотра снимков. Умное хранилище даже позволяло добавлять к фотографиям краткие описания, однако для этого было необходимо подключать внешнюю клавиатуру. Вместе с аккумуляторами его вес составлял 3,5 кг, тогда как общий вес комплекта достигал 5 кг.
Несмотря на сомнительное удобство и цену от 20 до 25 тысяч долларов (в максимальной комплектации), за три последующих года было реализовано около 1000 подобных устройств, которыми, помимо журналистов, заинтересовались медицинские учреждения, полиция и ряд промышленных предприятий. Одним словом, спрос на такую продукцию был, как была и острая потребность в более миниатюрных носителях информации. Подходящее решение предложила компания SanDisk, представив в 1994 году стандарт CompactFlash.
Карты памяти CompactFlash, выпущенные компанией SanDisk, и адаптер PCMCIA для их подключения к ПК
Новый формат получился настолько удачным, что успешно применяется и в настоящее время, а созданная в 1995 году CompactFlash Association насчитывает на сегодняшний день более 200 компаний-участников, среди которых Canon, Eastman Kodak Company, Hewlett-Packard, Hitachi Global Systems Technologies, Lexar Media, Renesas Technology, Socket Communications и многие другие.
Карты памяти CompactFlash могли похвастаться габаритными размерами 42 мм на 36 мм при толщине 3,3 мм. Физический интерфейс накопителей по сути представлял собой урезанный PCMCIA (50 штырьков вместо 68), благодаря чему такую карту можно было легко подключить к разъему для карт расширения PCMCIA Type II с помощью пассивного адаптера. Посредством опять же пассивного переходника CompactFlash мог обмениваться данными с периферийными устройствами через IDE (ATA), а специальные активные адаптеры позволяли работать с последовательными интерфейсами (USB, FireWire, SATA).
Несмотря на сравнительно малую емкость (первые CompactFlash могли вместить лишь 2 МБ данных), карты памяти этого типа были востребованы в профессиональной среде благодаря компактности, экономичности (один такой накопитель потреблял около 5% электроэнергии по сравнению с обычными 2,5-дюймовыми HDD, что позволяло продлить срок автономной работы портативного девайса) и универсальности, которая достигалась за счет как поддержки множества различных интерфейсов, так и возможности работы от источника питания с напряжением 3,3 или 5 вольт, а главное — впечатляющей устойчивости к перегрузкам свыше 2000 g, что было практически недостижимой планкой для классических винчестеров.
Все дело в том, что создать по-настоящему ударопрочные жесткие диски в силу их конструкционных особенностей технически невозможно. При падении любой объект подвергается кинетическому воздействию в сотни, а то и тысячи g (стандартное ускорение свободного падения, равное 9,8 м/с2) за менее чем 1 миллисекунду, что для классических HDD чревато рядом весьма неприятных последствий, в числе которых необходимо выделить:
- проскальзывание и смещение магнитных пластин;
- появление люфта в подшипниках, их преждевременный износ;
- шлепок головок по поверхности магнитных пластин.
В свете всего вышеперечисленного, для фоторепортеров новые накопители были по-настоящему незаменимы: куда лучше иметь при себе десяток-другой неприхотливых карточек, чем таскать за спиной штуковину размером с видеомагнитофон, которая практически со 100-процентной вероятностью выйдет из строя от мало-мальски сильного удара. Однако для розничного потребителя карты памяти были все еще слишком дороги. Именно поэтому на рынке «мыльниц» успешно доминировала Sony с «кубиком» Mavica MVC-FD, сохранявшим фото на стандартные 3,5-дюймовые дискеты, отформатированные в DOS FAT12, что обеспечивало совместимость почти с любым ПК того времени.
Любительский цифрофой фотоаппарат Sony Mavica MVC-FD73
И так продолжалось практически до конца десятилетия, пока в дело не вмешалась IBM. Впрочем, об этом мы расскажем уже в следующем материале.
А с какими необычными девайсами сталкивались вы? Быть может вам довелось снимать на Mavica, собственными глазами наблюдать агонию Iomega ZIP или пользоваться Toshiba T100X? Делитесь своими историями в комментариях.