Устройство преобразующее изображение находящееся в памяти компьютера в видеосигнал для монитора

Видеосигналы VGA и компонентный: рассмотрим в подробностях

Наше поколение живет в эпоху научно-технической революции, но поскольку мы находимся «внутри процесса», то не замечаем стремительной смены поколений окружающих нас технических устройств. Если раньше бытовая техника могла служить десятилетиями, то сейчас за два-три года она безнадежно устаревает – появляются новые идеи, новые технологии и материалы, которые позволяют эти идеи реализовать.

С момента создания первых искровых передатчиков радиоэлектронная аппаратура была аналоговой. Однако после Второй мировой войны, когда был изобретен биполярный и полевой транзистор, были разработаны первые интегральные микросхемы, цифровые технологии начали завоевывать себе место под солнцем. С точки зрения схемотехники цифровая аппаратура сложнее аналоговой, однако ее функциональные возможности гораздо шире, а некоторые из них принципиально недостижимы при аналоговой обработке сигнала. Несмотря на это, в области современных телевизионных технологий аналоговые видеосигналы применяются весьма широко и не собираются уходить в прошлое.

Проблема цифрового представления видеосигнала состоит в том, что ширина его спектра во много раз больше ширины спектра такого же видеосигнала, но в аналоговой форме. Современные системы цифрового телевидения, на которые постепенно переходят во всем мире, не способны работать с несжатым сигналом. Его приходится кодировать с помощью алгоритма MPEG, а это, как известно, алгоритм с потерей качества. Вот и выходит, что несмотря на развитие и совершенствование цифровых технологий, проще и дешевле для передачи видеосигнала на большие расстояния пользоваться аналоговыми видеоформатами: и ширина спектра сигнала вполне приемлема, и парк оборудования обширен, да и технологии отработаны до совершенства.

Цифровые интерфейсы DVI и его развитие HDMI – это, в общем, интерфейсы хоть недалекого, но будущего, да и предназначены они для решения других задач.

Аналоговый видеосигнал, используемый в современных телевизионных системах, может быть композитным и компонентным.

Композитный CV (composite video) – это простейший вид аналогового видеосигнала, в котором информация о яркости, цвете и синхронизации передается в смешанном виде. На ранних этапах развития видеотехники именно композитный сигнал передавался по коаксиальному кабелю, соединявшему видеомагнитофоны или видеоплееры с телевизорами.

Более совершенным вариантом композитного сигнала является сигнал S‑Video. Этот вид аналогового видеосигнала обеспечивает раздельную передачу сигнала яркости (Y) и двух объединённых сигналов цветности (C) по независимым кабелям, из-за чего этот сигнал называют еще YC. Поскольку сигналы яркости и цветности передаются раздельно, сигнал S-Video занимает значительно более широкую полосу частот, чем композитный. По сравнению с композитным видеосигналом, S-Video обеспечивает заметный выигрыш в чёткости и устойчивости изображения, в меньшей степени – в цветопередаче. S-Video широко используется в полупрофессиональной аппаратуре, вещательными студиями, а также при записи на 8-мм пленку в стандарте Hi-8 фирмы Sony.

Для телевидения высокой четкости и компьютерного видео эти интерфейсы не подходят, поскольку не обеспечивают необходимого разрешения изображения.

Содержание

Любая современная видеокарта состоит из следующих модулей:

Графический процессор (Graphics processing unit) — Освобождает ресурсы центрального процессора, управляя расчётами выводимого изображения, производит обработку команд трёхмерной графики. Этот модуль — основа графической платы, и он определяет быстродействие и возможности всей платы. Современные графические процессоры по сложности не уступают ЦП компьютера, и могут превосходить его по числу транзисторов. Современная GPU архитектура обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.

Видеоконтроллер — формирует изображение в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и обрабатывает запросы центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина шины видеопамяти и внутренней шины обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют как минимум два видеоконтроллера, котрые работают независимо друг от друга и управляют одновременно одним или несколькими дисплеями каждый.

Видеопамять — это своего рода кадровое хранилище, в котором содержится изображение, генерируемое и постоянно изменяемое GPU и выводимое на экран монитора (или нескольких мониторов). В видеопамяти также хранятся промежуточные не отображаемые на экране фрагменты изображения и другие данные. Есть несколько типов памяти, различающейся по скорости доступа и рабочей частоте. Современные видеокарты оснащаются памятью типа DDR, DDR2 или GDDR3. Следует также обратить внимание, что кроме видеопамяти, установленной на карте, современные графические процессоры, как правило, используют в своих нуждах часть общей памяти компьютера, доступ к которой осуществляет драйвер видеоадаптера через шину PCIE или AGP.

Цифро-аналоговый преобразователь (RAMDAC — Random Access Memory Digital-to-Analog Converter) — используется для преобразования изображения, которое формирует видеоконтроллер, в уровни интенсивности цвета, посылаемые на аналоговый монитор. Допустимый диапазон цветности изображения характеризуется лишь параметрами RAMDAC. Обычно RAMDAC имеет четыре ключевых блока — три цифроаналоговых конвертера, по одному на каждый цветовой канал (красный, зелёный, синий, RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн. цветов (а за счёт гамма-коррекции появляется возможность отобразить исходные 16,7 млн. цветов в большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд. цветов, однако эта возможность используется очень редко. Для поддержки второго монитора часто устанавливают второй ЦАП. Стоит заметить, что видеопроекторы и мониторы, подключаемые к цифровому DVI входу видеокарты, для преобразования потока цифровых данных используют свои цифроаналоговые преобразователи и не зависят от характеристик ЦАП видеокарты.

Видео-ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. Видеоконтроллер не использует ПЗУ напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки операционной системы, а также содержит системные данные, читаемые и интерпретированные видеодрайвером в процессе работы (в зависимости от метода разделения ответственности между BIOS и драйвером). На большинстве современных видеокартах установлены электрически перепрограммируемые ПЗУ (EEРROM, Flash ROM), которые допускают перезапись видео-BIOS самим пользователем с помощью специального ПО.

Система охлаждения — предназначена для поддержания температуры видеопроцессора и видеопамяти в допустимых для нормальной работы пределах.

Полнофункциональную и правильную работу современного графического адаптера обеспечивает видеодрайвер — специальное программное обеспечение, поставляемое производителем видеокарты и загружаемое в процессе запуска операционной системы. Видеодрайвер используется как интерфейс между видеоадаптером и системой с запущенными в ней приложениями. Так же как и видео-BIOS, драйвер организует и программно контролирует работу всех модулей видеоадаптера используя специальные регистры управления, доступ к которым происходит через соответствующую шину.

Принципы работы монитора

Существуют мониторы, работа которых основана на разных физических принципах. Первоначально на ПК использовались только мониторы на основе электронно-лучевой трубки — ЭЛТ-мониторы. На экране такого монитора пиксель образуется люминесцирующим веществом, которое светится под воздействием луча, испускаемого электронной пушкой. Такой луч пробегает по порядку (сканирует) все строки сетки пикселей. При этом он модулируется: на точки, которые должны светиться, падает, а на темных точках прерывается (рис. 4.8).

Поскольку после прекращения воздействия электронного луча на точку экрана ее свечение быстро затухает, постольку сканирование периодически повторяется с высокой частотой (75-85 раз в секунду и более). При такой частоте наше зрение не замечает мерцания изображения.

Первоначально на компьютерах использовались черно-белые мониторы. На черно-белом экране пиксель, на который падает электронный луч, светится белым цветом. Неосвещенный пиксель — черная точка. При изменении интенсивности электронного потока получаются промежуточные серые тона (оттенки).

Характеристики [ править | править код ]

  • ширина шины памяти, измеряется в битах — количество бит информации, передаваемой за такт. Важный параметр в производительности карты.
  • количество видеопамяти, измеряется в Мегабайтах — встроенная оперативная память на самой плате, значение показывает, какой объем информации может хранить графическая плата.
  • частоты ядра и памяти — измеряются в Мегагерцах, чем больше, тем быстрее видеокарта будет обрабатывать информацию.
  • техпроцесс — технология печати, измеряется в нанометрах (нм.), современные карты выпускаются по 90 нм или 80 нм и 65 нм нормам техпроцесса. Чем меньше данный параметр, тем больше элементов можно уместить на кристалле.
  • текстурная и пиксельная скорость заполнения, измеряется в млн. пикселей в секунду, показывает количество выводимой в информации в единицу времени.
  • выводы карты — раньше видеоадаптер имел всего один разъём VGA (D-Sub), сейчас платы оснащают в дополнение выходом DVI—I или просто с двумя DVI-I для подключения двух ЖК-мониторов, и HDMI порт, их объединяют в один порт и используют переходники, а также композитными и S-Video видеовыходом и видеовходом (обозначается, как ViVo)

Поколения ускорителей в видеокартах можно считать по версии DirectX, которую они поддерживают. Различают следующие поколения:

  • DirectX 7 — карта не поддерживает шейдеры, все картинки рисуются наложением текстур.
  • DirectX 8 — поддержка пиксельных шейдеров версий 1.0, 1.1 и 1.2, в DX 8.1 ещё и версию 1.4, поддержка вершинных шейдеров версии 1.0.
  • DirectX 9 — поддержка пиксельных шейдеров версий 2.0, 2.0a и 2.0b, 3.0

Системная (материнская) плата Основные характеристики

Системная (материнская) плата Основные характеристики

Системная (материнская) плата

Тип сокета.
Форм-фактор (размер).
Частота системной шины.
Наличие интегрированных компонентов (звук, видео, сетевой контроллер и т. д.).
Тип поддерживаемой оперативной памяти.
Чипсет (тип северного и южного мостов).

Основное аппаратное устройство компьютера.

На ней находится магистраль. Нужна для объединения всех модулей системного блока в единое целое.

Принцип действия видеокарты

состоит в следующем.

  1. Процессор формирует цифровое изображение в виде матрицы NхM n-разрядных чисел и записывает его в видеопамять. Участок видеопамяти, отведённый для хранения цифрового образа текущего изображения (кадра), называется кадровым буфером или фрейм-буфером.
  2. Видеокарта последовательно считывает (сканирует) содержимое ячеек кадрового буфера и формирует на выходе видеосигнал, уровень которого в каждый момент времени пропорционален значению, хранящемуся в отдельной ячейке. Сканирование видеопамяти осуществляется синхронно с перемещением электронного луча по экрану монитора. В результате яркость каждого пикселя на экране монитора пропорциональна содержимому соответствующей ячейки памяти видеокарты.
  3. По окончанию просмотра ячеек, соответствующих одной строке растра, видеокарта формирует импульсы строчной синхронизации, инициирующие обратный ход луча по горизонтали, а по окончании сканирования кадрового буфера формирует сигналы, вызывающие движение луча снизу вверх.

Таким образом, частоты строчной и кадровой развёртки монитора определяются скорость сканирования содержимого видеопамяти, т.е. видеокарта.

QLED-мониторы

Samsung C27FG73FQI: обзор монитора, характеристики, цена

Это вариация ранее упомянутых LED-мониторов. Все отличие сводится к установке дополнительного слоя — представляет собой металлический нанофильтр на основе квантовых точек. Последние, поглощают излучение светодиодов и транслируют его с четко выверенной длиной волны, которую определяет размер точки, и цвета не смешиваются.

Как итог, пользователи получают более насыщенные и яркие цвета. Относительно названия — его придумала и запатентовала Samsung, хотя у LG есть аналог названный NanoCell.

Преимущества:

  • Реалистичная цветопередача.
  • Более насыщенные цвета, по сравнению со стандартными LCD и LED.

Недостатки:

  • Неравномерная подсветка.

Недостатки:

  • Высокая цена (цена среднего монитора $10000).
  • Высокая потребляемая мощность (возрастает при увеличении диагонали).
  • Низкая разрешающая способность (обусловлена большим размером элемента изображения).
  • Сравнительно небольшой срок службы: 5–10 лет или 10000 ч при интенсивной эксплуатации (связано с довольно быстрым выгоранием люминофорных элементов).
  • Минимальный размер 40² (производство дисплеев меньшего размера экономически нецелесообразно).
  • Интерференция – взаимодействие света разной длины волны, излучаемого из соседних элементов экрана. В результате этого явления в определенной мере ухудшается качество изображения, но для глаза это незаметно.

Технология изготовления плазменных дисплеев несколько проще, чем ЖК. Плазменная технология используется при создании сверхтонких, плоских экранов.

Лицевая панель такого экрана состоит из двух плоских стеклянных пластин, расположенных на расстоянии около 100 мкм (микрометров) друг от друга. Между этими пластинами находится слой инертного газа (как правило, смесь ксенона и неона), на который воздействует сильное электрическое поле. На переднюю прозрачную пластину нанесены тончайшие прозрачные проводники – электроды, а на заднюю – ответные проводники. Задняя стенка имеет микроскопические ячейки, заполненные люминофорами трех основных цветов, по три ячейки на каждый пиксель. При помощи смешения в определенных пропорциях трех цветов получаются различные оттенки. Газ, который находится между двух пластин, переходит в плазменное состояние и излучает ультрафиолетовый свет.

Признанным лидером плазменной технологии является компания Fujitsu (серия Plasmavision).

NEC и Thomson – модель Thomson, обладающая высокой разрешающей способностью.

Лидерами по количеству и качеству предложенных моделей являются различные японские компании:Hitachi, Sharp, NEC, Toshiba, JVC, Fujitsu, Mitsubishi, Sony, Pioneer, Matsushita и др.

Pioneer предлагает предназначенные для профессионального применения плазменные панели с самым широким набором технологий улучшения изображения.

Корпорация Mitsubishi выпускает несколько линий плазменных панелей с диагональю 40²: серию телевизоров DiamondPanel и серию презентационных панелей Leonardo.

Philips – Philips Brilliance 420P.

Ряд ведущих разработчиков в области LCD и Plasma совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества двух видов.

Заключение.

Технологии совершенствуются, прослеживается тенденция снижения цен. Это технология будущего.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector