Устройства хранения информации

1. Микропроцессоры

Центральный процессор – неотъемлемая часть любой ЭВМ. Обычно это большая интегральная схема, представляющая собой кремниевый кристалл в пластмассовом, керамическом или металлокерамическом корпусе, на котором расположены выводы для приема и выдачи электрических сигналов. Функции ЦП выполняют микропроцессоры. Они осуществляют вычисления, пересылку данных между внутренними регистрами и управление ходом вычислительного процесса. Микропроцессор взаимодействует непосредственно с ОП и контроллерами системной платы. Главные носители информации внутри него – регистры.

Неотъемлемой частью микропроцессора являются:

АЛУ, состоящее из нескольких блоков, например блока обработки целых чисел и блока обработки чисел с плавающей точкой;

устройство управления, которое вырабатывает управляющие сигналы для выполнения команд;

внутренние регистры.

В основу работы каждого блока микропроцессора положен принцип конвейера, который заключается в следующем. Реализация каждой машинной команды разбивается на отдельные этапы, а выполнение следующей команды программы может быть начато до завершения предыдущей. Поэтому микропроцессор выполняет одновременно несколько следующих друг за другом команд программы, и время на выполнение блока команд уменьшается в несколько раз. Суперскалярной называют архитектуру, в основу работы которой положен принцип конвейера. Это возможно при наличии в микропроцессоре нескольких блоков обработки.

В программе могут встречаться команды передачи управления, выполнение которых зависит от результатов выполнения предшествующих команд. В современных микропроцессорах при использовании конвейерной архитектуры предусматриваются механизмы предсказания переходов. Другими словами, если в очереди команд появилась команда условного перехода, то предсказывается, какая команда будет выполняться следующей до определения признака перехода. Выбранная ветвь программы выполняется в конвейере, однако запись результата осуществляется только после вычисления признака перехода, тогда, когда переход выбран верно. В случае неправильного выбора ветви программы микропроцессор возвращается назад и выполняет правильные операции в соответствии с вычисленным признаком перехода.

Важными характеристиками микропроцессора являются:

его быстродействие, которое в значительной степени зависит от тактовой частоты микропроцессора;

архитектура микропроцессора, определяющая, какие данные он может обрабатывать, какие машинные инструкции входят в набор выполняемых им команд, как происходит обработка данных, каков объем внутренней памяти микропроцессора.

В состав микропроцессора может входить кэш-память (сверхоперативная), обеспечивающая более быструю передачу информации, чем ОП. Различают кэш-память первого уровня, которая обычно встроена в тот же кристалл и работает на одинаковой с микропроцессором частоте; кэш-память второго уровня – общая, когда команды и данные хранятся вместе, и разделенная, когда они хранятся в разных местах.

При решении сложных математических и физических задач в некоторых компьютерах предусмотрено использование специального устройства, которое называется математическим сопроцессором. Это устройство представляет собой специализированную интегральную микросхему, работающую во взаимодействии с ЦП и предназначенную для выполнения математических операций с плавающей точкой.

Устройства хранения информации

Средства информатизации — средства вычислительной техники и связи, оргтехники, предназначенные для сбора, накопления, хранения, поиска, обработки данных и выдачи информации потребителю.

Технические средства информатизации – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является информация (данные), используемые для удовлетворения информационных потребностей в разных областях деятельности общества.

Все технические средства информатизации в зависимости от выполняемых функций можно разделить на шесть групп:

1. Устройства ввода информации:

· Текста (клавиатура, сканер);

· Местоуказания (мышь, световое перо, трекбол, графический планшет, джойстик);

· Мультимедиа (графика (сканер и цифровая фотокамера), звук (магнитофон, микрофон), видео (веб-камера, видеокамера)).

2. Устройства вывода информации:

· Текста (монитор, принтер);

· Мультимедиа (графика (принтер, плоттер), звук (наушники, акустические системы), видео (видеомагнитофон, видеокамера)).

3. Устройства обработки информации:

· Микропроцессор;

· Сопроцессор.

4. Устройства передачи и приема информации:

· Сетевая карта.

5. Многофункциональные устройства:

· Устройства копирования;

· Устройства размножения;

· Издательские системы.

Устройства хранения информации

· flash-карты и др.

Как следует из приведенной выше классификации, большая часть современных технических средств информатизации в той или иной мере связана с ЭВМ – персональными компьютерами (ПК).

Устройства ввода и вывода являются непременным и обязательным элементом любой ЭВМ, начиная с самой первой и заканчивая современными ПК, поскольку именно эти устройства обеспечивают взаимодействие пользователя с вычислительной системой.

Все устройства ввода/вывода персонального компьютера относятся к периферийным устройствам, т.е. подключаемым к микропроцессору через системную шину и соответствующие контроллеры. На сегодняшний день существуют целые группы устройств (например, устройства местоуказания, мультимедиа), которые обеспечивают эффективную и удобную работу пользователя.

Главным устройством вычислительной машины является микропроцессор, обеспечивающий в наиболее общем случае управление всеми устройствами и обработку информации. Для решения специфических задач, например, математических вычислений современные персональные компьютеры оснащаются сопроцессорами. Эти устройства относятся к устройствам обработки информации.

Устройства передачи и приема информации (или устройства связи) являются непременными атрибутами современных информационных систем, которые все больше приобретают черты распределенных информационных систем, в которых информация хранится не в одном месте, а распределена в пределах некоторой сети.

Модем (модулятор-демодулятор) – устройство, преобразующее информацию в такой вид, в котором ее можно передавать по телефонным линиям связи. Внутренние модемы имеют PCI-интерфейс и подключаются непосредственно к системной плате. Внешние модемы подключаются через порты COM или USB.

Сетевой адаптер (сетевая плата) – электронное устройство, выполненное в виде платы расширения (может быть интегрирован в системную плату) с разъемом для подключения к линии связи.

Устройства хранения информации занимают не последнее место среди всех технических средств информатизации, поскольку используются для временного (непродолжительного) или длительного хранения обрабатываемой и накапливаемой информации.

Многофункциональные устройства стали появляться сравнительно недавно. Отличительная особенность этих устройств заключается в сочетании целого ряда функций (например, сканирование и печать или печать и брошюровка печатных копий, и т.д.) по автоматизации действий пользователя.

Компьютер(от англ. Computer – вычислитель) представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами.

Основу компьютеров образует аппаратура (hardware), построенная, в основном, с использованием электронных и электромеханических элементов и устройств. Принцип действия компьютеров состоит в выполнении программ (software) – заранее заданных, четко определенных последовательностей арифметических, логических и других операций. Любая компьютерная программа представляет собой последовательность отдельных команд.

Архитектура компьютера – это совокупность аппаратных средств.

Структура компьютера – это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов.

рис. Структурная схема ПК

Микропроцессор (МП) – центральный блок ПК, предназначенный для управления всеми блоками машины и для выполнения арифметических и логических операций.

В состав МП входят:

· Устройство управления (УУ) – формирует и подает сигналы управления во все блоки компьютера;

· Арифметико–логическое устройство (АЛУ) – предназначено для выполнения всех арифметических и логических операций над информацией;

· Микропроцессорная память (МПП) – служит для кратковременного хранения, записи и выдачи информации.

Генератор тактовых импульсов – генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины. Частота генератора тактовых импульсов определяет, сколько элементарных операций может выполнить процессор за секунду, т.е. определяет скорость его работы.

Память ПК делится на основную (оперативную, внутреннюю) и внешнюю.

Оперативная память (ОП) – предназначена для хранения и оперативного обмена информацией с прочими блоками машины при ее обработке МП.

ОП содержит два вида запоминающих устройств:

· Постоянное запоминающее устройство (ПЗУ) – служит для хранения неизменяемой программной и справочной информации. Это энергонезависимая память (не стирается при выключении компьютера), содержимое которой изготавливается на заводе-изготовителе и со временем не меняется.

· Оперативное запоминающее устройство (ОЗУ)– предназначено для обработки (записи, считывания и хранения) информации непосредственно участвующей в информационно вычислительном процессе. Эта память энергозависимая (стирается при выключении компьютера). Часть ОЗУ отводится для хранения изображений, получаемых на экране монитора, и называется видеопамятью. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между МП и ОЗУ. Кэш-память является промежуточным запоминающим устройством (буфером).

Внешняя память (ВП) –используется для долговременного хранения любой информации.

ВП содержит разнообразные виды запоминающих устройств, но наиболее распространенными являются:

· НЖМД – накопитель на жестком магнитном диске (винчестер) предназначен для постоянного хранения информации, используемой при работе с компьютером (ОС, ППП и др.).

Основная характеристика жесткого диска – это его емкость, то есть количество информации, размещаемой на диске.

· Оптические диски — с помощью дисководов для оптических дисков компьютеры могут считывать специальные компьютерные диски, а также проигрывать обычные аудио компакт-диски. DVD диск может содержать до 4Гбайт информации.

Для обмена информацией между любым устройством и ОП имеются два промежуточных звена:

1) для каждого устройства в ПК имеется электронная схема, которая им управляет. Эта схема называется контроллером (адаптером).

2) все адаптеры взаимодействуют с МП и ОП через системную шину.

Системная шина – это общий канал связи, соединяющий все части компьютера.

Внешние устройства (ВУ) – важнейшая составляющая часть любого вычислительного комплекса.

Состав ВУ может быть различным, например:

· Монитор – устройство для отображения вводимой и выводимой из ПК информации;

· Клавиатура – устройство для ручного ввода информации;

· Манипулятор Мышь – является указательным устройством, т.к. позволяет указывать на различные элементы на экране компьютера.

· Принтер – печатающее устройство для вывода информации на бумажный носитель.

· Сканер служит для считывания текстовой и графической информации в память ПК.

· Сетевой адаптер служит для подключения ПК в локальную сеть, что позволяет использовать программные данные, находящиеся на других ПК.

· Модем – устройство, предназначенное для обмена информацией между удаленными компьютерами по каналам связи.

Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной.

Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация.

Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы.

©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (7180)

3. Поколения ЭВМ

Первое поколение ЭВМ — ламповые машины 50-х годов. Скорость счёта самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), они, главным обра-зом, использовались для инженерных и научных расчётов, не связанных с переработкой больших объёмов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Первая ЭВМ ЭНИАК (ENIAC) была создана в конце 1945 г. в США; она весила 30 т и размещалась на 170 м 2 . В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — Малая Электронная Счётная Машина (рис. 2.1).

Рис. 2.1. ЭВМ первого поколения МЭСМ

К концу 40-х гг. XX в., когда вошли в строй первые большие электронные компьютеры, специалисты начали искать замену громоздким и хрупким, часто выходившим из строя лампам, на которых они были построены. В 1948 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надёжнее, менее энергоёмкими (рис. 2.2). Быстродействие большинства машин достигло нескольких сотен тысяч операций в секунду. Объём внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Это способствовало созданию на ЭВМ информационно-справочных, поисковых систем, нуждающихся в длительном хранении больших объёмов информации.

Во времена второго поколения ЭВМ активно начали развиваться языки программирования высокого уровня, одним из первых среди которых был Фортран (Fortran — сокращение от англ. FORmula TRANslation — трансляция формулы).

Рис. 2.2. ЭВМ второго поколения БЭСМ-6

Ключевыми фигурами среди физиков, занимавшихся изучением полупроводников, стали американские учёные Джон Бардин (1908 — 1991), Уолтер Браттейн (1902 — 1987), Уильям Брэдфорд Шокли (1910 — 1989). В 1948 году в газете «Нью-Йорк тайме» была напечатана короткая заметка, в которой сообщалось об изобретении ими нового устройства — транзистора. Эта информация прошла практически незамеченной, мало кто смог в то время оценить её по достоинству. Позже транзистор был признан одним из важнейших изобретений века, а его изобретатели получили Нобелевскую премию по физике.

Благодаря транзистору — германиевому кристаллу величиной с булавочную головку, заключённому в металлический цилиндр длиной около сантиметра, — электроника ступила на путь миниатюризации: один транзистор был способен заменить 40 электронных ламп.

Хотя транзистор был выдающимся научным изобретением, он не сразу получил широкое практическое применение в вычислительной технике. Германий, из которого изготавливали первые транзисторы, — довольно редкий химический элемент, поэтому стоимость транзисторов была очень высокой. Резко снизить стоимость транзисторов удалось только в середине 50-х гг. XX в.: в 1954 году был изготовлен первый транзистор из кремния — основного компонента обычного песка, — одного из самых распространённых на Земле химических элементов.

Третье поколение ЭВМ создавалось на новой элементной базе — сложные электронные схемы монтировались на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 . Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС, а затем появились сверхбольшие интегральные схемы — СБИС. ЭВМ третьего поколения начали производить во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. В ЭВМ третьего поколения широко использовались новые типы устройств ввода-вывода: дисплеи, графопостроители (рис. 2.3).

Рис. 2.3. Рабочее помещение с установленной ЕС-1060

В этот период были созданы операционные системы (ОС), позволявшие управлять большим количеством внешних устройств и выполнять на одной машине несколько программ одновременно. Широкое распространение получили ранее созданные языки программирования. Начали появляться пакеты прикладных программ для решения задач в конкретных областях. Это существенно расширило области применения ЭВМ.

Первая интегральная схема, представлявшая собой кристалл, в котором была размещена целая схема из нескольких транзисторов, была разработана в 1958 г. американским физиком Джеком Килби, удостоенным за это изобретение Нобелевской премии.

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора.

Микропроцессор — это СБИС, способная выполнять функции основного блока компьютера — процессора. Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера — микроЭВМ. Микро-ЭВМ относятся к машинам четвёртого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

Сегодня самой популярной разновидностью ЭВМ являются персональные компьютеры (ПК). Первый ПК был создан в 1976 году в США. С 1980 года и на долгие годы вперёд на рынке ПК ведущей становится американская фирма IBM. Её конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). С точки зрения общественного развития появление и распространение ПК сопоставимы с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием компьютеров этого типа появилось такое понятие, как информационные технологии, без которых уже невозможно обойтись в большинстве областей человеческой деятельности.

Ещё одной линией в развитии ЭВМ четвёртого поколения являются суперкомпьютеры — мощные многопроцессорные компьютеры, выполняющие параллельную обработку данных (рис. 2.4).

Все компьютеры, используемые в настоящее время, по-прежнему построены на базе идей четвёртого поколения.

Рис. 2.4. Суперкомпьютер «Ломоносов»

В начале 90-х годов прошлого века в Японии начались работы по созданию компьютера пятого поколения. По замыслу японских специалистов основой работы этих компьютеров должны были стать не вычисления, а логические рассуждения, что означало переход от обработки данных к обработке знаний. Машину обещали научить воспринимать речь человека, рукописный текст и графические изображения. Окончательные результаты в этом направлении всё ещё не достигнуты. Исследования продолжаются.

Можно проследить несколько основных тенденций, имеющих место в развитии вычислительной техники:
возрастание вычислительной мощности компьютеров от поколения к поколению;
• изменение целей использования компьютеров от сугубо военных и научно-технических расчётов к техническим и экономическим расчётам, коммуникационному и информационному обслуживанию, управлению;
• изменение в режиме работы компьютеров от однопрограммного к пакетной обработке, работе в режиме разделения времени, персональной работе и сетевой обработке данных;
• движение от машинного языка к языкам высокого уровня;
• повышение удобства работы пользователя за счёт усовершенствования аппаратного и программного обеспечения, возможности произвольного мобильного расположения;
• неуклонное расширение областей применения и круга пользователей компьютерной техники
.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector