Учимся наводить порядок в компьютере?
Сегодня мы раз и навсегда научимся содержать компьютер в чистоте. Не многие понимают, что компьютер – это машина, которая как и вся техника требует ухода за собой.
А правильное, упорядоченное расположение файлов на компьютере – это и есть чистота. Так что уделите 5 минут своего времени и посмотрите, как должна храниться информация на компьютере правильно.
Имя файла
Вот пример имени файла * :
myprog.pas
* Последующие примеры ориентированы на правила, принятые в операционных системах фирмы Microsoft: MS-DOS и Windows. Также проиллюстрированы приложения ОС Linux.
Слева от точки находится собственно имя файла (myprog). Следующая за точкой часть имени (pas) называется расширением файла. Обычно в именах файлов употребляются латинские буквы и цифры. Кроме того, имя файла может и не иметь расширения. В операционной системе Microsoft Windows в именах файлов допускается использование русских букв; максимальная длина имени — 255 символов.
Расширение указывает, какого рода информация хранится в данном файле. Например, расширение txt обычно обозначает текстовый файл (содержит текст), расширение рсх — графический файл (содержит рисунок), zip или rаr — архивный файл (содержит архив — сжатую информацию), pas — программу на языке Паскаль.
Файлы, содержащие выполнимые компьютерные программы, имеют расширения ехе или соm. Например, программа игры «Тетрис» может храниться в файле tetris.exe. Инициализация программы происходит путем записи ее в оперативную память и запуска на исполнение.
Файлы
Основной единицей информации на компьютере является файл. Это некий контейнер, внутри которого хранится какое-то количество информации, объединённое определенной смысловой составляющей. Файл может быть какой-то таблицей, текстом, программой, фотографией, видеороликом, музыкальной композицией и так далее.
Каждый файл имеет собственное имя, которые ему присваивает пользователь в момент его создания и записи на диск. Его имя состоит из двух частей – самого имени (от 1 до 255 символов) и расширения (до четырех символов), разделенных точкой. Например, у файла с названием name.txt, «name» является его именем, а «txt» – расширением. Расширение для файла является необязательным.
Расширения имен файлов, определяют их тип, то есть принадлежности к тем или иным программам, способы создания и назначения. То есть, в большинстве случаев, по расширению файла можно понять, какого рода информацию он содержит. Например:
Файлы и папки
Программы и данные хранятся на устройствах долговременной памяти в виде файлов. Содержимым файла может быть текст, программа, таблица, рисунок, ведомость и т. д.
Файл — это информация, хранящаяся во внешней памяти компьютера и обозначенная именем.
Имя файла, как правило, состоит из двух частей: собственно имени и расширения. Собственно имя файлу придумывает тот, кто его создаёт. Делать это рекомендуется осмысленно, отражая в имени содержание файла. Имя файла может содержать до 255 символов; в нём можно использовать буквы латинского и русского алфавитов, пробелы и практически все другие символы, имеющиеся на клавиатуре.
Расширение обычно автоматически задаётся программой, в которой вы работаете. Оно сообщает пользователю и компьютеру о том, какого типа информация хранится в файле и какой программой был создан этот файл. Почти всегда расширение состоит из трёх букв латинского алфавита. От имени расширение отделяется точкой.
Например, имя файла расписание.txt говорит о том, что в файле может содержаться текстовая информация о расписании.
Уточните, каких правил при именовании файлов необходимо придерживаться в ОС, установленной на вашем компьютере.
На каждом компьютерном носителе информации может храниться огромное количество файлов — десятки и даже сотни тысяч. Чтобы не возникло путаницы, файлы по определённым признакам группируют в папки.
Папка — это контейнер для файлов.
Каждый файл хранится в папке или во вложенной папке (папка, расположенная внутри папки). Пусть, например, на жёстком диске компьютера записано несколько игр. Игра представляет собой набор файлов. Каждая игра хранится в отдельной папке, при этом все папки с играми для удобства могут быть вложены в одну общую папку с именем «Игры».
Система хранения файлов напоминает хранение большого количества книг в библиотеке (рис. 13).
Рис. 13
Для каждого из вас на жёстком диске создана папка, где будут храниться файлы с вашими текстами и рисунками.
Много полезной информации вы сможете почерпнуть из видеолекции «Файлы и папки», размещённой в Единой коллекции цифровых образовательных ресурсов (sc.edu.ru).
Телефон пишет, что не хватает места для новых фото. Пора менять?
Чаще всего достаточно поудалять старые видео, даже не фото. Одна фотография занимает не так много места, как минута видео, поэтому если нужно освободить память — удаляйте видео.
Если у вас Айфон, он автоматически заботится о том, чтобы чистить память: он в фоновом режиме отгружает ваши старые фото и видео в «облако». Когда они нужны, он их сам оттуда загрузит. Но «облако» тоже не резиновое, поэтому чистите память.
Директории сайтов
С понятием «директория сайта» ситуация несколько сложнее, хотя принцип понимания самой сути практически тот же. Дело в том, что в данном случае под директорией подразумевается корневой каталог, в котором будут храниться все элементы создаваемого или уже созданного веб-сайта, например на языке HTML.
Прежде всего, в корневом каталоге в обязательном порядке должен находиться файл Index.html (главная страница), туда же загружаются папки Content (для страниц) и Images (для картинок). Впрочем, необязательно использовать именно такие названия. Их можно обозначить как угодно – допустим, давать наименования по рубрикам, в которые будут помещаться материалы по определенной тематике. Правда, это увеличит сам корневой каталог, зато в некоторых случаях именно за счет этого можно добиться сокращения пути к самим страницам.
Какой бывает компьютерная память и в каких устройствах она используется?
Все виды компьютерной памяти можно разделить на две большие категории. Энергозависимая и энергонезависимая память. Энергозависимая память теряет все данные при отключении системы. Это происходит потому, что такая память требует постоянной энергетической подпитки и, как только подача электричества прекращается, она перестает функционировать. Энергонезависимая память сохраняет данные вне зависимости от того, включен ваш компьютер или нет. К примеру, большинство типов оперативной памяти относятся к энергозависимой категории.
Наиболее известные представители энергонезависимой категории это ПЗУ (постоянная память) и флеш-память, получившая в последнее время немалое распространение. В частности, карты памяти CompactFlash и SmartMedia.
Прежде всего просто перечислим основные виды компьютерной памяти и только потом начнем их рассматривать:
- Оперативная память. Оперативное запоминающее устройство. ОЗУ, RAM
- Постоянная память. Постоянное запоминающее устройство. ПЗУ, ROM
- Кеш-память, Cache
- Динамическая оперативная память. Dynamic RAM, DRAM
- Статическая оперативная память. Static RAM, SRAM
- Флеш-память, Flash memory
- Память типа Memory Sticks в виде карт памяти для цифровых фотоаппаратов
- Виртуальная память, Virtual memory
- Видеопамять, Video memory
- Базовая система ввода-вывода, БСВВ, BIOS
Как мы уже писали, память применяется не только в компьютерах, но и в иных цифровых устройствах. Тех «компьютероподобных» устройствах, которые для удобства изложения материала мы будем считать компьютерами, не отвлекаясь на постоянные обсуждения различий между ними. В частности, планшеты многие аналитики относят к компьютерам. Речь идет в том числе и о:
- Сотовых телефонах
- Смартфонах
- Планшетах
- Игровых консолях
- Автомобильных радиоприемниках
- Цифровых медиаплеерах
- Телевизорах
Прежде, чем разбираться в том, как функционирует каждый вид памяти, поинтересуемся тем, как она вообще работает.
Типы устройств
Когда дело доходит до физического хранилища, рекомендуется использовать различные типы устройств. Каждое устройство предлагает несколько разные преимущества и недостатки с точки зрения надежности и производительности, поэтому важно понимать, как каждое из них работает, как они могут дополнять друг друга.
HDD, или жесткие диски
Самое известное запоминающее устройство, доступное на рынке, – жесткий диск. На HDD информация будет храниться на оптическом и круглом диске. Данные считываются и записываются с помощью сенсорного рычага. Этот принцип очень похож на компакт-диск или проигрыватель. Если нужна более высокая скорость передачи данных, то можно увеличить вращение диска. Таким образом, HDD будет предлагать лучшую производительность.
Однако на самом деле эта скорость ограничена вращением диска. Большинство жестких дисков предлагают до 7000 об/мин. Если использовать дорогие HDD, скорость может достигать 15000 об/мин. Срок их службы – около 3-5 лет. Однако они дешевле по сравнению с другими устройствами.
SSD, или твердотельные накопители
Твердотельные накопители отличаются от HDD, поскольку у них нет вращающихся или движущихся частей. Эти диски используют флэш-память NAND. Твердотельные накопители почти в 4-10 раз быстрее жестких дисков. Они также более долговечны.
Однако SSD дороже по сравнению с HDD. Каждый блок памяти может хранить ограниченные данные, считаются ненадежными для резервных копий.
Ленточные накопители
Самая старая форма приводов, доступных на рынке. Ленточные накопители в основном используются компаниями, которые хранят большой объем архивных файлов, когда не нужно быстро получать к ним доступ. Жизненный цикл большинства цифровых ленточных накопителей составляет более 30 лет. Кроме того, не нужно беспокоиться о его поддержании. Это идеальное решение для резервного копирования.
Хотя сами ленты довольно дешевы, приводная система, необходимая для чтения и записи информации, дорога в обслуживании и сложна в управлении. Многие компании, использующие ответвительные диски для обеспечения отказоустойчивого восстановления после сбоев, предпочитают одну и ту же систему в течение многих лет и избегают перехода на более сложную технологию (или «облако») из-за затрат на миграцию и внедрение.
Пятимерное (5D) хранилище
Представляет собой новую разработку, где используются диски из плавленого кварца, которые могут кодировать данные в трех стандартных измерениях (ширина, длина, глубина) и двух оптических измерениях. Последнее достигается изменением поляризации и интенсивности лазерного света в процессе записи. Это позволяет небольшим стеклянным дискам 5D хранить 360 ТБ. Диски 5D невероятно долговечны и теоретически могут прожить миллиарды лет при комнатной температуре.
Но в качестве экспериментальной технологии 5D по-прежнему не является рентабельным или практичным способом для хранения рабочих и личных файлов. Возникают вопросы о том, сможет ли кварцевый состав поддерживать несколько записей, не говоря уже о том, какое оборудование потребуется для чтения закодированной информации.
Тем не менее, технология является многообещающей в качестве будущего долгосрочного архивного решения для хранения данных благодаря надежности и доступной памяти.
Корпоративные сети и серверная флэш-память
Поставщики корпоративных хранилищ предоставляют интегрированные системы NAS, которые помогают собирать большие объемы информации и управлять ими. Аппаратное обеспечение включает в себя массивы или серверы хранения, оснащенные жесткими дисками, флэш-накопителями или их гибридной комбинацией, а также программное обеспечение для предоставления услуг обработки данных на основе массивов.
С 2011 года все большее число предприятий внедряют массивы all-flash, оснащенные только твердотельными накопителями на базе флэш-памяти NAND, в качестве дополнения или замены дисковых массивов.
В отличие от дисков, устройства флэш-памяти не полагаются на движущиеся механические части, что обеспечивает более быстрый доступ к информации и меньшую задержку. Флэш-память является энергонезависимой, что позволяет информации сохраняться в памяти, даже если система теряет питание. При этом для дисковых систем требуется встроенная резервная батарея или конденсаторы.
Но флэш-память еще не достигла уровня выносливости, эквивалентного диску, что привело к созданию гибридных массивов, объединяющих оба типа носителей.
Существует 3 основных варианта сетевых систем хранения. В своей простейшей конфигурации хранилище с прямым подключением (DAS) включает внутренний жесткий диск отдельного компьютера. На предприятии DAS может быть кластером дисков на сервере или группой внешних дисков, которые подключаются непосредственно к серверу через интерфейс малых компьютерных систем (SCSI), последовательный интерфейс SCSI (SAS), волоконный канал (FC) или Интернет.
NAS – это архитектура, в которой несколько файловых узлов совместно используются пользователями обычно через подключение к локальной сети (LAN) на основе Ethernet. Преимущество NAS в том, что файловым серверам не требуется полнофункциональная операционная система корпоративного хранилища. Устройства NAS управляются с помощью служебной программы на основе браузера, и каждому узлу в сети назначается уникальный IP-адрес.
С горизонтально масштабируемым NAS тесно связано хранилище объектов, которое устраняет необходимость в файловой системе. Каждый объект представлен уникальным идентификатором. Все объекты представлены в едином плоском пространстве имен.
Сеть хранения данных (SAN) может быть спроектирована для охвата нескольких местоположений дата-центров, которым требуется высокопроизводительное блочное хранилище. В среде SAN блочные устройства воспринимаются хостом как локально подключенное хранилище. Каждый сервер в сети может получить доступ к общему хранилищу, как если бы это был диск с прямым подключением.
Достижения в области флэш-памяти NAND в сочетании с падением цен в последние годы проложили путь к программно-определяемым хранилищам. Используя эту конфигурацию, предприятие устанавливает твердотельные накопители по стандартной цене на сервер на базе x86, используя стороннее ПО или собственный открытый исходный код для управления хранилищем.
Энергонезависимая память Express (NVMe) – это развивающийся отраслевой протокол для флэш-памяти. Отраслевые обозреватели ожидают, что NVMe станет стандартом для флэш-хранилищ. NVMe позволит приложениям напрямую взаимодействовать с центральным процессором (ЦП) через каналы связи PCIe, минуя наборы команд SCSI, передаваемые на сетевой адаптер главной шины. NVMe-oF предназначен для ускорения передачи данных между хост-компьютером и целевой флэш-памятью с использованием установленного сетевого подключения Ethernet, FC или InfiniBand.
Энергонезависимый двухрядный модуль памяти (NVDIMM) представляет собой гибридную память NAND и DRAM со встроенным резервным питанием, который подключается к стандартному слоту DIMM на шине памяти. Модули NVDIMM используют только флэш-память для резервного копирования, выполняя обычные вычисления в DRAM.
NVDIMM помещает флэш-память ближе к материнской плате, предполагая, что производитель компьютера модифицировал сервер и разработал базовые драйверы системы ввода-вывода (BIOS) для распознавания устройства. Модули NVDIMM – это способ расширить системную память или добавить высокопроизводительное хранилище, а не увеличить емкость. Текущие модули NVDIMM на рынке достигают максимум 32 ГБ, но плотность в форм-факторе увеличилась с 8 ГБ до 16 ГБ всего за несколько лет.