Как работает термистор в блоке питания
Для начинающих радиолюбителей этот тип радиодеталей практически не знаком. Хотя они появились еще 1930-х годах, благодаря ученому Самуэлю Рубену. Так что такое терморезистор? Если коротко, то это этот элемент, по сути, одна из разновидностей резистора. Другие названия: термистор, термосопротивление.
Какая его конструкция, какие задачи он выполняет и как он устроен — об этом в этой статье.
Прямой и косвенный нагрев.
По способу нагрева терморезисторы делят на две группы:
Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).
Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.
Виды и устройство терморезисторов
Терморезисторы можно разделить на две большие группы по реакции на изменение температуры:
- если при нагреве сопротивление падает, такие терморезисторы называются NTC-термисторами (с отрицательным температурным коэффициентом сопротивления);
- если при нагреве сопротивление увеличивается, то термистор имеет положительный ТКС (PTC-характеристику) – такие элементы называют ещё позисторами.
Тип термистора определяется свойствами материалов, из которых изготовлены терморезисторы. Металлы при нагреве увеличивают сопротивление, поэтому на их основе (точнее, на базе оксидов металлов) выпускают термосопротивления с положительным ТКС. У полупроводников зависимость обратная, поэтому из них делают NTC-элементы. Термозависимые элементы с отрицательным ТКС теоретически можно делать и на основе электролитов, но этот вариант на практике крайне неудобен. Его ниша – лабораторные исследования.
Конструктив термисторов может быть различным. Их выпускают в виде цилиндров, бусин, шайб и т.п. с двумя выводами (как у обычного резистора). Можно подобрать наиболее удобную форму для установки на рабочем месте.
Как такие полупроводники работают
Производители таких деталей допускают их максимальную чувствительность к перемене в температурном режиме. При нагреве число активно заряженных частиц возрастает. От количества таких частиц зависит проводимость элемента.
Важно понимать, что аналогичный полупроводниковый элемент работает по типу подчиненности к температурным режимам металла в составе компонента. В них применяются элементы с содержанием:
- марганца;
- медных примесей;
- никеля и его сплавов;
- силикатов;
- оксидов и другого.
Но надо учитывать принцип действия терморезистора. От этого будет зависеть, как он будет работать — на повышение или понижение сопротивления, когда меняется рабочая температура элемента.
Терморезисторы разделяются на такие основные разновидности как — NTC или PTC.
Изделия такого типа обладают отрицательными ТКХ. Их отличие в том, что внутреннее сопротивление термистора способно уменьшаться при увеличении t0, и наоборот. Если температурная нагрузка t0 уменьшается, то сопротивление R увеличивается.
Такие характеристики важны в тех случаях, когда необходимо ограничить пусковой ток при:
- запуске электродвигателя;
- защите Li-ионных аккумуляторных батарей.
Также термистор нужен в блоке питания для понижения зарядных токов.
Терморезисторы NTC-типа находят применение и в автомобильной промышленности, как датчик для автоматического управления системой климат-контроль. Или как датчик контроля перегрева двигателя. Если допустимо безопасный режим превышается, уходит управляющая команда на реле управления и двигатель автоматически глушится.
Элементы NTC-типа — могут быть применены в системах пожаротушения, как датчик пожара, который обнаруживает быстрый рост температуры и включающий пожарную сигнализацию.
На этих миниустройствах может быть нанесена буквенная маркировка или цветовая в виде полосок или колец. Вид рисунка зависит от того где сделан компонент, его типа и ряда других параметров.
Для примера расшифруем маркировку 4D-21.
4D — показывает, что его номинал рассчитан для температур до 24 градусов Цельсия. Цифра 21 — диаметр элемента.
Чтобы правильно подобрать этот элемент существуют специальные таблицы, с рассчитанными параметрами работы. Например, такая как для термисторов SCN-серии:
Аналогичные таблицы помогают выбрать элемент в нужном рабочем диапазоне под свои задачи.
Существуют и PTC — термисторы, у которых ТКС положительный.
О чем это говорит?
При нагреве детали ее внутренне сопротивление растёт. Такие изделия часто можно было встретить в старых цветных телевизионных приемниках с кинескопами.
На сегодняшний день можно выделить два типа деталек РТС — с двумя или тремя выводами.
У изделий с тремя контактами основное отличие в том, что у них два позитрона в виде «таблеток», заключенных в один корпус.
Внешне эти два элемента выглядят практически идентично. Но это обманчивое впечатление.
Они отличаются как размером, так и сопротивлением.
В первом случае рабочий диапазон от 1.4 до 3.7 кОм, а во втором варианте — 17–25 Ом.
Двухвыводные детали чаще всего производятся с добавлением кремния (Si). Выглядят как небольшая таблетка с парой выводов.
РТС элементы чаще всего употребляются для защиты от перегрузок силового оборудования и его перегрева. И для поддержания корректной температуры в безопасно устойчивых диапазонах.
Как работает варистор?
Варистор — это резистор, сопротивление которого изменяется в зависимости от приложенного напряжения. В нормальных условиях оно очень большое (мегаОмы) и не оказывает особого влияния на работу электрической цепи при параллельном включении.
Вольт-амперная характеристика варистора:
При значительном повышении напряжения на варисторе сопротивление падает, это приводит к поглощению энергии всплеска и выделении ее в виде тепла.
Варисторы нужны для защиты радиоэлектронных устройств от бросков высокого напряжения за счет того, что их сопротивление резко падает с увеличением поданного на них напряжения:
Это спасает другие компоненты от выхода из строя, хотя иногда приводит к выгоранию самого варистора, спасающего своим героическим поведением более дорогие электронные элементы. Варисторы устанавливаются на входе БП перед диодным выпрямителем, так как они дополнительно выполняют фильтрующую функцию — гашение помех, возникающих при выключении диодного моста.
Варистор TVR 14471 на входе блока питания Be Quiet Dark Power Pro мощностью 1200 ватт с платиновым сертификатом:
Доработка БП
В заключение дадим несколько советов по доработке БП, что позволит сделать его работу более стабильной:
- во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
- диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
- выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
- бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
- если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.
Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.
Методика проверки (инструкция)
После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.
Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы
Если таковы не обнаружены, переходим к следующему алгоритму действий:
- проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;
Установленный на плате предохранитель
- проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;
Дисковый термистор (обозначен красным)
- тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение , с большой вероятностью, вывело эти радиодетали из строя;
SMD и встроенные терморезисторы
Существует также еще два вида терморезисторов, которым стоит уделить внимание:
- SMD — детали с особым типом монтажа (для внешнего крепления). Внешне они не сильно отличаются от конденсаторов SMD, изготовленных из керамики. Габариты соответствуют стандартному ряду — 1206, 0805, 0603 и т. д. По виду отличить такие изделия от терморезисторов SMD почти невозможно.
- Встроенные. Применяются в паяльных станциях (для контроля температуры жала), в том числе термовоздушного типа.
В дополнение стоит сказать, что в электронике вместе с терморезисторами используются термореле и термические предохранители, которые работают на похожем принципе и также устанавливаются в электронных приборах.