Структура микропроцессорной системы и основные режимы ее работы – выполнение основной программы, обслуживание прерываний, прямой доступ к памяти

Урок 7
Устройство персонального компьютера и его основные характеристики. Знакомство с комплектацией устройств ПК, подключение внешних устройств

Как устроен персональный компьютер

Основные темы параграфа:

— что такое ПК;
— основные устройства ПК;
— магистральный принцип взаимодействия устройств ПК.

Изучаемые вопросы:

— Персональный компьютер – компьютер для личного пользования.
— Основные устройства персонального компьютера.
— Минимальный комплект устройств.
— Магистральный принцип взаимодействия устройств персонального компьютера.
— Характеристики микропроцессора: тактовая частота, разрядность.
— Объём – основная характеристика оперативной памяти.
— Характеристики устройств внешней памяти.

Что такое ПК

В § 5 мы познакомились с основными устройствами компьютера — электронно-вычислительной машины (ЭВМ). Современные ЭВМ бывают самыми разными: от больших, занимающих целый зал, до маленьких, помещающихся на столе, в портфеле и даже в кармане. Разные ЭВМ используются для разных целей. Сегодня самым массовым видом ЭВМ являются персональные компьютеры. Персональные компьютеры (ПК) предназначены для личного (персонального) использования. Существуют различные типы ПК: стационарные (настольные) и мобильные (ноутбуки, планшетные ПК, карманные ПК).

Несмотря на разнообразие моделей ПК, в их устройстве существует много общего. Об этих общих свойствах и пойдет сейчас речь.

Основные устройства ПК

Основной «деталью» персонального компьютера является микропроцессор (МП). Это миниатюрная электронная схема, созданная путем очень сложной технологии, выполняющая функцию процессора компьютера.

Персональный компьютер представляет собой набор взаимосвязанных устройств. В стационарном ПК центральным устройством является системный блок. В системном блоке находится «мозг» машины: микропроцессор и внутренняя память. Там же помещаются: блок электропитания, дисководы, контроллеры внешних устройств. Системный блок снабжен вентиляторами для охлаждения нагревающихся при работе элементов.

С наружной стороны системного блока имеются сетевой выключатель, кнопка перезагрузки компьютера, разъемы (которые называют портами) для подключения внешних устройств, выдвижной лоток для установки оптического диска.

К системному блоку подключены клавиатура (клавишное устройство), монитор (другое название — дисплей) и мышь (манипулятор). Иногда используются другие типы манипуляторов: джойстик, трекбол и пр. Дополнительно к ПК могут быть подключены: принтер (устройство печати), модем (для выхода в компьютерную сеть) и другие устройства (рис. 2.7).

На рисунке 2.7 показана стационарная модель ПК, на рис. 2.8 — ноутбук.

В ноутбуке все необходимые компоненты объединены в одном корпусе, который складывается как книжка (отсюда название компьютера).

Все устройства внешней памяти, а также устройства ввода/вывода взаимодействуют с процессором ПК через специальные блоки, которые называются контроллерами (от английского controller — контролер, управляющий). Существуют контроллер дисковода, контроллер монитора, контроллер принтера и т. п.

Сравнительно недавно в составе ПК появился универсальный контроллер, позволяющий подключать через универсальный разъем (USB) различные виды устройств: принтер, монитор, клавиатуру, мышь и др.

Магистральный принцип взаимодействия устройств ПК

Принцип, по которому организована информационная связь между устройствами компьютера, называется магистральным принципом взаимодействия. Процессор через многопроводную линию, которая называется магистралью (другое название — шина), связывается с другими устройствами (рис. 2.9).

Каждое подключаемое к ПК устройство получает свой номер, который выполняет роль адреса этого устройства. Информация, передаваемая от процессора к устройству, сопровождается его адресом и подается на контроллер. Далее работой устройства управляет контроллер.

Характерная организация магистрали такая: по одной группе проводов (шина данных) передается обрабатываемая информация, по другой (шина адреса) — адреса памяти или внешних устройств, к которым обращается процессор. Есть еще третья часть магистрали — шина управления; по ней передаются управляющие сигналы (например, проверка готовности устройства к работе, сигнал к началу работы устройства и др.).

Коротко о главном

В состав системного блока входят: микропроцессор, внутренняя память, дисководы, блок питания, контроллеры внешних устройств.

Внешние устройства (устройства ввода/вывода, устройства внешней памяти) взаимодействуют с процессором ПК через контроллеры.

Все устройства ПК связаны между собой по многопроводной линии, которая называется информационной магистралью, или шиной.

Каждое внешнее устройство имеет свой адрес (номер). Передаваемая к нему по шине данных информация сопровождается адресом устройства, который передается по адресной шине.

Вопросы и задания

1. Назовите минимальный комплект устройств, составляющих персональный компьютер, и сделайте фотографии этих устройств.

2. Какие устройства входят в состав системного блока?

3. Что такое контроллер? Какую функцию он выполняет?

4. Как физически соединены между собой различные устройства ПК?

5. Как информация, передаваемая по шине, попадает на нужное устройство?

Основные характеристики персонального компьютера

Основные темы параграфа:

— характеристики микропроцессора;
— объем внутренней (оперативной) памяти;
— характеристики устройств внешней памяти;
— устройства ввода/вывода.

Изучаемые вопросы:

— Персональный компьютер – компьютер для личного пользования.
— Основные устройства персонального компьютера.
— Минимальный комплект устройств.
— Магистральный принцип взаимодействия устройств персонального компьютера.
— Характеристики микропроцессора: тактовая частота, разрядность.
— Объём – основная характеристика оперативной памяти.
— Характеристики устройств внешней памяти.

Все чаще персональные компьютеры используются не только на производстве и в учебных заведениях, но и в домашних условиях. Их можно купить в магазине так же, как покупают бытовую технику. При покупке любого товара желательно знать его основные характеристики, для того чтобы приобрести именно то, что вам нужно. Такие основные характеристики есть и у ПК.

Характеристики микропроцессора

Существуют различные модели микропроцессоров, выпускаемые разными фирмами. Основными характеристиками МП являются тактовая частота и разрядность процессора.

Режим работы микропроцессора и других связанных с ним устройств задается микросхемой, которая называется генератором тактовой частоты. Это своеобразный метроном внутри компьютера. На выполнение процессором каждой операции отводится определенное количество тактов. Ясно, что если метроном «стучит» быстрее, то и процессор работает быстрее. Тактовая частота измеряется в мегагерцах — МГц. Частота в 1 МГц соответствует миллиону тактов в одну секунду. Вот некоторые характерные тактовые частоты микропроцессоров: 600, 800, 1000 МГц. Последняя величина называется гигагерцем — ГГц. Современные модели микропроцессоров работают с тактовыми частотами в несколько гигагерц.

Следующая характеристика — разрядность процессора. Разрядностью называют максимальную длину двоичного кода, который может обрабатываться или передаваться процессором целиком. Разрядность процессоров на первых моделях ПК была равна 8 битам. Затем появились 16-разрядные процессоры. На современных ПК чаще всего используются 32-разрядные процессоры. Наибольшая разрядность у современных микропроцессоров, используемых в ПК, — 64 бита.

Объем внутренней (оперативной) памяти

Про память компьютера мы уже говорили. Она делится на оперативную (внутреннюю) и долговременную (внешнюю) память. Производительность машины очень сильно зависит от объема внутренней памяти. Если для работы каких-то программ не хватает внутренней памяти, то компьютер начинает переносить часть данных во внешнюю память, что резко снижает его производительность. Скорость чтения/записи данных в оперативную память на несколько порядков выше, чем во внешнюю.

Объем оперативной памяти влияет на производительность компьютера. Для эффективной работы современных программ требуется оперативная память объемом в сотни и тысячи мегабайтов (гигабайты).

Назначение кэш-памяти

Для сокращения времени выполнения программы в состав ПК входит специальный вид внутренней памяти, который называется кэш-памятью. Это небольшой по объему, но имеющий самое короткое время чтения/записи раздел памяти компьютера. В кэш-памяти дублируются данные и команды из оперативной памяти, к которым процессор наиболее часто обращается при выполнении программы. Поэтому первоначально процессор ищет требуемую информацию в кэш-памяти, и только если ее там не обнаруживает, обращается к более медленной оперативной памяти.

Характеристики устройств внешней памяти

Устройства внешней памяти — это магнитные и лазерные дисководы, флэш-память. Встроенные в системный блок магнитные диски называются жесткими дисками, или винчестерами. Это очень важная часть компьютера, поскольку именно здесь хранятся все необходимые для работы компьютера программы. Чтение/запись на жесткий диск производится быстрее, чем на все другие виды внешних носителей, но все-таки медленнее, чем в оперативную память. Чем больше объем жесткого диска, тем лучше. На современных ПК устанавливают жесткие диски, объем которых измеряется в гигабайтах: десятки и сотни гигабайтов. Покупая компьютер, вы приобретаете и необходимый набор программ на жестком диске. Обычно покупатель сам заказывает состав программного обеспечения компьютера.

Все остальные носители внешней памяти — сменные, т. е. их можно вставлять в дисковод и доставать из дисковода. К ним относятся оптические диски типа CD (компакт-диски) и DVD. Об их свойствах рассказывалось в § 6. Диски удобны для длительного хранения программ и данных, а также для переноса информации с одного компьютера на другой.

В обязательный комплект современного ПК входят оптические дисководы для работы с CD и DVD. На этих носителях распространяется программное обеспечение. Вместимость CD-ROM исчисляется сотнями мегабайтов (стандартный объем — 700 Мб). Информационная емкость DVD исчисляется гигабайтами (4,7; 8,5; 17 Гб). Часто на DVD записываются видеофильмы. На одном диске можно уместить двухчасовой видеофильм с несколькими звуковыми дорожками на разных языках.

Пишущие оптические дисководы позволяют производить запись и перезапись информации на CD-RW и DVD-RW.

В последнее время основным средством переноса информации с одного компьютера на другой стала флеш-память. Флеш-память — это электронное устройство внешней памяти, используемое для чтения и записи информации в файловом формате. Флеш-память, как и диски, — энергонезависимое устройство. Емкость носителя составляет от сотен мегабайтов до нескольких гигабайтов. А скорость чтения и записи данных на флеш-носитель приближается к скорости чтения и записи на жесткий диск.

Устройства ввода/вывода

Все остальные типы устройств относятся к числу устройств ввода/вывода. Обязательными из них являются клавиатура, монитор и манипулятор (мышь; на мобильных ПК: трекбол, тачпад, джойстик и др.). Дополнительные устройства: принтер, модем, сканер, звуковая система и некоторые другие. Выбор этих устройств зависит от потребностей и финансовых возможностей покупателя. Всегда можно найти источники справочной информации о моделях таких устройств и их эксплуатационных свойствах.

Коротко о главном

Основные характеристики микропроцессора: тактовая частота и разрядность. Чем больше тактовая частота, тем выше скорость работы процессора. Увеличение разрядности ведет к увеличению объема данных, обрабатываемых компьютером за единицу времени.

Объем оперативной памяти влияет на производительность компьютера. Для эффективной работы современных программ требуется оперативная память объемом в сотни и тысячи мегабайтов (гигабайты).

Жесткий магнитный диск — обязательное устройство внешней памяти в составе компьютера.

Сменными носителями являются оптические диски, флеш-память.

Необходимый набор устройств ввода/вывода: клавиатура, манипулятор, монитор.

Дополнительные устройства ввода/вывода: принтер, сканер, модем, акустическая система и др.

Вопросы и задания

1. От каких характеристик компьютера зависит его производительность?

2. Информационный объем какого порядка имеют винчестеры, CD-ROM, DVD-ROM?

3. Какие устройства памяти являются встроенными, какие — сменными?

4. Какие устройства ввода/вывода являются обязательными для ПК, какие — дополнительными?

Статьи к прочтению:

Что такое микропроцессор? Ядром любой микропроцессорной системы является микропроцессор или просто процессор (от английского processor). Перевести на…

Что такое чип?

Как это работает: микропроцессор

Чип также называется интегральной схемой. Обычно это небольшой, тонкий кусочек кремния, на которой транзисторы, входящие в состав микропроцессора были выгравированы. Чип может быть размером в один дюйм, но при этом содержать в себе десятки миллионов транзисторов. Более простые процессоры могут состоять из нескольких тысяч транзисторов, выгравированных на чипе всего в несколько квадратных миллиметров.

МНОП транзистор

На рис. 4.3 приведена конструкция МНОП транзистора (металл-нитрид кремния-оксид кремния-полупроводник). Эффект памяти основан на изменении порогового напряжения транзистора при наличии захваченного в подзатворном диэлектрике положительного или отрицательного заряда, который хранится на глубоких (1.3-1.5 эВ) ловушках, в нитриде кремния вблизи границы SiO2-Si3N4.

Рис. 4.3. Конструкция МНОП транзистора: 1 — металлический затвор; 2,3 — области истока и стока соответственно; 4 — подложка.

Запись информационного заряда происходит так же, как и в МОП транзисторе с плавающим затвором. Высокая эффективность захвата электронов (или дырок) связана с большим сечением захвата на ловушки (порядка 10-13 кв.см.) и большой их концентрации (порядка 1019 куб.см.).

Рис. 4. Операция записи в МНОП-структуре (зонная диаграмма).

Ток в окисле Jox — туннельный ток инжекции, ток JN — ток сквозной проводимости в нитриде. В случае прямого туннелирования электронов в зону проводимости SiO2 сквозь треугольный барьер плотность тока определяется уравнением Фаулера-Нордгейма , где A — константы, Е — напряженность электрического поля. По мере накопления заряда поле на контакте уменьшается, что приводит к уменьшению скорости записи. Эффективность записи зависит также и от тока сквозной проводимости в нитриде.

Стирание информации (возврат структуры в исходное состояние) может осуществляться:

— ультрафиолетовым излучением с энергией квантов более 5.1 эВ (ширина запрещенной зоны нитрида кремния) через кварцевое окно;

— подачей на структуру импульса напряжения, противоположного по знаку записывающему. В соответствии с ГОСТом такие ИМС имеют в своем названии литеры РФ и РР соответственно. Время хранения информации в МНОП транзисторе обусловлено термической эмиссией с глубоких ловушек и составляет порядка 10 лет в нормальных условиях. Основными факторами, влияющими на запись и хранение заряда, являются электрическое поле, температура и радиация. Количество электрических циклов «запись-стирание» обычно не менее 10 5 .

Оперативные запоминающие устройства

Полупроводниковые ЗУ подразделяются на ЗУ с произвольной выборкой и ЗУ с последовательным доступом. ЗУПВ подразделяются на:

— статические оперативные запоминающие устройства (СОЗУ);

— динамические оперативные запоминающие устройства (ДОЗУ). ЗУ с последовательным доступом подразделяются на:

— приборы с зарядовой связью (ПЗС).

В основе большинства современных ОЗУ лежат комплиментарные МОП ИМС (КМОП), которые отличаются малой потребляемой мощностью. Это достигается применением пары МОП транзисторов с разным типом канала: n-МОП и p-МОП. Как видно на рис. 4.5, в КМОП инверторе как при низком, так и при высоком уровне сигнала на входе один из транзисторов закрыт. Поэтому потребление энергии происходит только при переключении «1»R»0″ (и обратно).

Рис. 5. Схема КМОП инвертора.

Чтобы реализовать на подложке n-типа не только p-канальный транзистор, но и n-канальный, последний изготавливается в так называемом «кармане», как показано на рис. 6

Рис. 6. Конструкция инвертора на КМОП транзисторах.

Аналогично на четырех МОП транзисторах (2 n-МОП и 2 p-МОП, включенных параллельно и последовательно) можно построить и другие базовые логические элементы «И» и «ИЛИ» и, соответственно, на их основе строятся все другие более сложные логические схемы.

Как известно, быстродействие МОП транзисторов в первую очередь ограничивается большой входной емкостью затвор-исток (подложка). Уменьшение геометрических размеров приборов (площади затвора и длины канала) при увеличении степени интеграции увеличивает граничную частоту.

Малое потребление энергии позволяет использовать КМОП ИМС с питанием от микробатареи как ПЗУ, где располагается часть операционной системы, которая осуществляет начальную загрузку всей системы (программа Setup).

Статические запоминающие устройства

Элементарной ячейкой статического ОЗУ с произвольной выборкой является триггер на транзисторах Т1-Т4 (рис. 3.7) с ключами Т5-Т8 для доступа к шине данных. Причем Т1-Т2 — это нагрузки, а Т3-Т4 — нормально закрытые элементы.

Рис. 7. Ячейка статического ОЗУ

Сопротивление элементов Т1-Т2 легко регулируется в процессе изготовления транзистора путем подгонки порогового напряжения при легировании поликремниевого затвора методом ионной имплантации. Количество транзисторов (6 или 8) на ячейку зависит от логической организации памяти микропроцессорной системы.

Динамические запоминающие устройства

В отличие от статических ЗУ, которые хранят информацию пока включено питание, в динамических ЗУ необходима постоянная регенерация информации, однако при этом для хранения одного бита в ДОЗУ нужны всего 1-2 транзистора и накопительный конденсатор (рис. 4.8). Такие схемы более компактны.

Рис. 8. Запоминающая ячейка динамического ОЗУ

Рис. 9. Конструкция ячейки ДОЗУ (см. рис. 4.8, слева). Снизу представлен разрез схемы по линии А-А

Естественно, что в микросхеме динамического ОЗУ есть один или несколько тактовых генераторов и логическая схема для восстановления информационного заряда, стекающего с конденсатора. Это несколько «утяжеляет» конструкцию ИМС.

Чаще всего и СОЗУ, и ДОЗУ выполнены в виде ЗУ с произвольной выборкой, которые имеют ряд преимуществ перед ЗУ с последовательным доступом.

Функции микропроцессора

После включения питания процессор переходит в первый адрес программы начального пуска и выполняет эту программу. Данная программа предварительно записана в постоянную (энергонезависимую) память. После завершения программы начального пуска процессор начинает выполнять основную программу, находящуюся в постоянной или оперативной памяти, для чего выбирает по очереди все команды. От этой программы процессор могут отвлекать внешние прерывания или запросы на ПДП. Команды из памяти процессор выбирает с помощью циклов чтения по магистрали. При необходимости процессор записывает данные в память или в устройства ввода/вывода с помощью циклов записи или же читает данные из памяти или из устройств ввода/вывода с помощью циклов чтения.

Таким образом, основные функции любого процессора следующие:

выборка (чтение) выполняемых команд; ввод (чтение) данных из памяти или устройства ввода/вывода; вывод (запись) данных в память или в устройства ввода/вывода; обработка данных (операндов), в том числе арифметические операции над ними; адресация памяти, то есть задание адреса памяти, с которым будет производиться обмен; обработка прерываний и режима прямого доступа. Упрощенно структуру микропроцессора можно представить в следующем виде

Основные функции показанных узлов следующие.

Схема управления выборкой команд выполняет чтение команд из памяти и их дешифрацию. В первых микропроцессорах было невозможно одновременное выполнение предыдущей команды и выборка следующей команды, так как процессор не мог совмещать эти операции. Но уже в 16-разрядных процессорах появляется так называемый конвейер (очередь) команд, позволяющий выбирать несколько следующих команд, пока выполняется предыдущая. Два процесса идут параллельно, что ускоряет работу процессора. Конвейер представляет собой небольшую внутреннюю память процессора, в которую при малейшей возможности (при освобождении внешней шины) записывается несколько команд, следующих за исполняемой. Читаются эти команды процессором в том же порядке, что и записываются в конвейер (это память типа FIFO, First In — First Out, первый вошел — первый вышел). Правда, если выполняемая команда предполагает переход не на следующую ячейку памяти, а на удаленную (с меньшим или большим адресом), конвейер не помогает, и его приходится сбрасыва ть. Но такие команды встречаются в программах сравнительно редко.

Развитием идеи конвейера стало использование внутренней кэш-памяти процессора, которая заполняется командами, пока процессор занят выполнением предыдущих команд. Чем больше объем кэш-памяти, тем меньше вероятность того, что ее содержимое придется сбросить при команде перехода. Понятно, что обрабатывать команды, находящиеся во внутренней памяти, процессор может гораздо быстрее, чем те, которые расположены во внешней памяти. В кэш-памяти могут храниться и данные, которые обрабатываются в данный момент, это также ускоряет работу. Для большего ускорения выборки команд в современных процессорах применяют совмещение выборки и дешифрации, одновременную дешифрацию нескольких команд, несколько параллельных конвейеров команд, предсказание команд переходов и некоторые другие методы.

Арифметико-логическое устройство (или АЛУ, ALU) предназначено для обработки информации в соответствии с полученной процессором командой. Примерами обработки могут служить логические операции (типа логического «И», «ИЛИ», «Исключающего ИЛИ» и т.д.) то есть побитные операции над операндами, а также арифметические операции (типа сложения, вычитания, умножения, деления и т.д.). Над какими кодами производится операция, куда помещается ее результат — определяется выполняемой командой. Если команда сводится всего лишь к пересылке данных без их обработки, то АЛУ не участвует в ее выполнении.

Быстродействие АЛУ во многом определяет производительность процессора. Причем важна не только частота тактового сигнала, которым тактируется АЛУ, но и количество тактов, необходимое для выполнения той или иной команды. Для повышения производительности разработчики стремятся довести время выполнения команды до одного такта, а также обеспечить работу АЛУ на возможно более высокой частоте. Один из путей решения этой задачи состоит в уменьшении количества выполняемых АЛУ команд, создание процессоров с уменьшенным набором команд (так называемые RISC-процессоры). Другой путь повышения производительности процессора — использование нескольких параллельно работающих АЛУ.

Что касается операций над числами с плавающей точкой и других специальных сложных операций, то в системах на базе первых процессоров их реализовали последовательностью более простых команд, специальными подпрограммами, однако затем были разработаны специальные вычислители — математические сопроцессоры, которые заменяли основной процессор на время выполнения таких команд. В современных микропроцессорах математические сопроцессоры входят в структуру как составная часть.

Регистры процессора представляют собой по сути ячейки очень быстрой памяти и служат для временного хранения различных кодов: данных, адресов, служебных кодов. Операции с этими кодами выполняются предельно быстро, поэтому, в общем случае, чем больше внутренних регистров, тем лучше. Кроме того, на быстродействие процессора сильно влияет разрядность регистров. Именно разрядность регистров и АЛУ называется внутренней разрядностью процессора, которая может не совпадать с внешней разрядностью.

По отношению к назначению внутренних регистров существует два основных подхода. Первого придерживается, например, компания Intel, которая каждому регистру отводит строго определенную функцию. С одной стороны, это упрощает организацию процессора и уменьшает время выполнения команды, но с другой — снижает гибкость, а иногда и замедляет работу программы. Например, некоторые арифметические операции и обмен с устройствами ввода/вывода проводятся только через один регистр — аккумулятор, в результате чего при выполнении некоторых процедур может потребоваться несколько дополнительных пересылок между регистрами. Второй подход состоит в том, чтобы все (или почти все) регистры сделать равноправными, как , например, в 16-разрядных процессорах Т-11 фирмы DEC. При этом достигается высокая гибкость, но необходимо усложнение структуры процессора. Существуют и промежуточные решения, в частности, в процессоре MC68000 фирмы Motorola половина регистров использовалась для данных, и они были взаимозаменяемы, а другая половина — для адресов, и они также взаимозаменяемы.

Регистр признаков (регистр состояния) занимает особое место, хотя он также является внутренним регистром процессора. Содержащаяся в нем информация — это не данные, не адрес, а слово состояния процессора (ССП, PSW — Processor Status Word). Каждый бит этого слова (флаг) содержит информацию о результате предыдущей команды. Например, есть бит нулевого результата, который устанавливается в том случае, когда результат выполнения предыдущей команды — нуль, и очищается в том случае, когда результат выполнения команды отличен от нуля. Эти биты (флаги) используются командами условных переходов, например, командой перехода в случае нулевого результата. В этом же регистре иногда содержатся флаги управления, определяющие режим выполнения некоторых команд.

Схема управления прерываниями обрабатывает поступающий на процессор запрос прерывания, определяет адрес начала программы обработки прерывания (адрес вектора прерывания), обеспечивает переход к этой программе после выполнения текущей команды и сохранения в памяти (в стеке) текущего состояния регистров процессора. По окончании программы обработки прерывания процессор возвращается к прерванной программе с восстановленными из памяти (из стека) значениями внутренних регистров. Подробнее о стеке будет рассказано в следующем разделе.

Схема управления прямым доступом к памяти служит для временного отключения процессора от внешних шин и приостановки работы процессора на время предоставления прямого доступа запросившему его устройству.

Логика управления организует взаимодействие всех узлов процессора, перенаправляет данные, синхронизирует работу процессора с внешними сигналами, а также реализует процедуры ввода и вывода информации.

Таким образом, в ходе работы процессора схема выборки команд выбирает последовательно команды из памяти, затем эти команды выполняются, причем в случае необходимости обработки данных подключается АЛУ. На входы АЛУ могут подаваться обрабатываемые данные из памяти или из внутренних регистров. Во внутренних регистрах хранятся также коды адресов обрабатываемых данных, расположенных в памяти. Результат обработки в АЛУ изменяет состояние регистра признаков и записывается во внутренний регистр или в память (как источник, так и приемник данных указывается в составе кода команды). При необходимости информация может переписываться из памяти (или из устройства ввода/вывода) во внутренний регистр или из внутреннего регистра в память (или в устройство ввода/вывода).

Внутренние регистры любого микропроцессора обязательно выполняют две служебные функции:

определяют адрес в памяти, где находится выполняемая в данный момент команда (функция счетчика команд или указателя команд); определяют текущий адрес стека (функция указателя стека). В разных процессорах для каждой из этих функций может отводиться один или два внутренних регистра. Эти два указателя отличаются от других не только своим специфическим, служебным, системным назначением, но и особым способом изменения содержимого. Их содержимое программы могут менять только в случае крайней необходимости, так как любая ошибка при этом грозит нарушением работы компьютера, зависанием и порчей содержимого памяти.

Содержимое указателя (счетчика) команд изменяется следующим образом. В начале работы системы (при включении питания) в него заносится раз и навсегда установленное значение. Это первый адрес программы начального запуска. Затем после выборки из памяти каждой следующей команды значение указателя команд автоматически увеличивается (инкрементируется) на единицу (или на два в зависимости от формата команд и типа процессора). То есть следующая команда будет выбираться из следующего по порядку адреса памяти. При выполнении команд перехода, нарушающих последовательный перебор адресов памяти, в указатель команд принудительно записывается новое значение — новый адрес в памяти, начиная с которого адреса команд опять же будут перебираться последовательно. Такая же смена содержимого указателя команд производится при вызове подпрограммы и возврате из нее или при начале обработки прерывания и после его окончания.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector