Скачать Частотомер для ПК

ТОП-5 виртуальных генераторов звуковых частот для ПК и смартфонов

4.8 Оценок: 5 (Ваша: )

Необходимо выполнить тестирование звукового оборудования, синтезировать частоты или шум? Это может потребоваться для калибровки звука, добавления необычных эффектов при создании мелодии и подкаста, проверки возможностей звуковой карты, настройки музыкальных инструментов и т.д. Для синтеза сигнала вам потребуется программа генератор звуковых частот на ПК или смартфон. В этой статье мы рассмотрим лучшие приложения, которые подходят для разных уровней подготовки.

загрузить и установить Частотомер на вашем персональном компьютере и Mac

Некоторые приложения, например, те, которые вы ищете, доступны для Windows! Получите это ниже:

SN заявка Скачать рецензия Разработчик
1. Frequency Generator App Скачать /5
0 рецензия

Или следуйте инструкциям ниже для использования на ПК :

Выберите версию для ПК:

Если вы хотите установить и использовать Частотомер на вашем ПК или Mac, вам нужно будет загрузить и установить эмулятор Desktop App для своего компьютера. Мы усердно работали, чтобы помочь вам понять, как использовать app для вашего компьютера в 4 простых шагах ниже:

Генератор сигналов на микросхеме таймера 555

Генератор сигналов на микросхеме таймера 555. Схема электрическая принципиальная

Генератор сигналов на микросхеме таймера 555. Схема электрическая принципиальная

Прежде всего, мы поговорим о генераторе прямоугольного сигнала на микросхеме 555, или, я бы сказал, о нестабильном (астабильном, автоколебательном) мультивибраторе на 555. Эта схема необходима, потому что для проверки частотомера нам необходим сигнал, частота которого известна. Без этого сигнала мы не сможем рассказать о работе частотомера. Если у нас есть прямоугольный сигнал с известной частотой, мы можем использовать его для проверки частотомера на Arduino и для подстройки точности в случае любых отклонений. Макет генератора сигнала на микросхеме таймера 555 показан ниже.

Макет генератора сигналов на микросхеме таймера 555

Макет генератора сигналов на микросхеме таймера 555

Ниже показана типовая схема таймера 555 в нестабильном режиме, из которой мы получили вышеприведенную схему генератора сигналов.

Типовая схема на таймере 555 в автоколебальном режиме

Типовая схема на таймере 555 в автоколебальном режиме

Частота выходного сигнала зависит от резисторов RA и RB и конденсатора C. Формула будет следующей:

Здесь RA и RB – значения сопротивлений, а C – значение емкости. Подставляя значения сопротивлений и емкости в приведенную выше формулу, мы получаем частоту выходного прямоугольного сигнала.

Можно увидеть, что RB на схеме выше заменен в нашей схеме генератора сигналов потенциометром; это сделано для того, чтобы для лучшего тестирования мы могли получить на выходе прямоугольный сигнал переменной частоты. Для простоты можно заменить этот потенциометр простым резистором.

Приступаем к сборке

Высыпаем на стол содержимое пакета. Внутри находятся печатная плата, сопротивления, конденсаторы, диоды, транзисторы, разъемы, микросхема с панелькой и индикаторы.

Частотомер на PIC16F628 своими руками

Ну и вид на весь набор в полностью разложенном виде.

Частотомер на PIC16F628 своими руками

Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.

Я начинал сборку с установки пассивных элементов: резисторов, конденсаторов и разъёмов. При монтаже резисторов следует немного узнать об их цветовой маркировке из предыдущей статьи. Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет) и поэтому также посоветую просто измерить сопротивление резисторов при помощи мультиметра. И результат будем знать и за одно его исправность.

Конденсаторы маркируются также как и резисторы.
Первые две цифры — число, третья цифра — количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22 пФ.
Они маркируются просто указанием емкости так как емкость меньше 100 пФ, т.е. меньше трехзначного числа.

Резисторы и керамические конденсаторы можно впаивать любой стороной — здесь полярности нет.

Частотомер на PIC16F628 своими руками

Выводы резисторов и конденсаторов я загибал, чтобы компонент не выпал, лишнее откусывал, а затем опаивал паяльником.

Частотомер на PIC16F628 своими руками

Немного рассмотрим такой компонент, как — подстроечный конденсатор. Это конденсатор, ёмкость которого можно изменять в небольших пределах (обычно 10-50пФ). Это элемент тоже неполярный, но иногда имеет значение как его впаивать. Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. Чтобы было меньше влияния отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом, соединялся с общей шиной платы.

Разъемы — сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, плохо облуживается. Потому нужно ножки разъёмов дополнительно почистить и облудить.

Теперь впаиваем кварцевый резонатор, он изготовлен под частоту 20МГц, полярности также не имеет, но под него лучше подложить диэлектрическую шайбочку или приклеить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.

Далее впаиваем транзисторы, диоды и индикаторы. В отличии от резисторов и конденсаторов здесь нужно впаивать правильно, согласно рисунку и надписям на плате.

Длительность пайки каждой ножки не должна превышать 2 сек! Между пайками ножек должно пройти не менее 3 сек на остывание.

Частотомер на PIC16F628 своими руками

Ну вот собственно и всё!

Частотомер на PIC16F628 своими руками

Теперь осталось смыть остатки канифоли щёткой со спиртом.

Частотомер на PIC16F628 своими руками

Осталось правильно вставить микросхему в свою «кроватку» и подключить питание к схеме.

Питание должно быть В пределах от 5 до 9 В — постоянное стабилизированное без пульсаций. (В схеме нет ни одного эл.конденсатора по питанию.)

Не забудьте у микросхемы есть с торца ключ — он располагается у вывода №1! Не следует полагаться на надпись названия микросхемы — она может быть написана и к верх ногами.

При подключении питания и отсутствия сигнала на входе высвечивается 0.

Частотомер на PIC16F628 своими руками

Первым делом нашёл кучу кварцев и начал проверять. Следует отметить, что частота кварца, например 32,768 кГц не может быть измерена, т.к. измерение ограничивается в диапазоне от 1 МГц.

Можно измерить, например 48 МГц, но следует иметь ввиду, что будет измерены гармонические колебания кварцевого генератора. Так 48 МГц будет измерена основная частота 16 МГц.

Подстроечным конденсатором можно подстроить показания частотомера по эталонному генератору или сравнить с заводским частотомером.

Частотомер на PIC16F628 своими руками

Режим программирования частотомера позволяет вычесть четыре основные запрограммированные ПЧ частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц, а также любую собственную частоту.

Налаживание

Налаживают приставку в такой последовательности. Временно соединив перемычками зажим Х1 с Х2, коллектор с эмиттером транзистора VT1, анод с катодом стабилитрона VD1, включают питание и убеждаются в наличии стабилизированных напряжений +15 и -15 В.

Затем подстроечным резистором R8 устанавливают нулевое напряжение на выходе (вывод 6) ОУ DA2. После этого снимают перемычку, соединяющую зажимы Х1 и Х2, и подключают к ним с соблюдением полярности источник образцового напряжения.

В крайнем случае можно использовать имеющийся в приборе стабилизированный источник +15 В, подсоединив к нему регулируемый резистивный делитель и контролируя милливольтметром снимаемое с его нижнего (соединенного с общим проводом) плеча напряжение.

Погрешность измерений милливольтметра должна быть минимальной, так как она в конечном счете определяет погрешность измерения температуры.

Установив на выходе образцового источника напряжение 52,43 мВ (такое напряжение термопара генерирует при температуре +1300 °С), с помощью подстроечного резистора R13 добиваются на выводе 6 DA2 напряжения 2 В. Затем снижают входное напряжение до 4,1 мВ (оно соответствует температуре +100 °С) и запоминают напряжение, создаваемое в этом случае на выводе 6 DA2 (должно быть 156,4 мВ).

Далее с помощью ленточного кабеля и разъема подключают приставку к параллельному порту ПК. Включив питание приставки и ПК, компилируют исходный текст WWOD.ASM в программу WWOD.COM. Затем, сделав соответствующую запись в файл инициализации AUTOEXEC.BAT, перезагружают ПК и, используя TURBO BASIC, вводят и запускают следующую тестовую программу (она позволяет считывать и нормировать выходные данные программного частотомера; значение переменной Norm выбрано ориентировочно):

call interrupt &h60

На данном этапе полезно “прогнать” всю градуировочную таблицу термопары ТХА [3] и подбором значения переменной Norm добиться соответствия между входным напряжением приставки и показаниями тестовой программы.

call interrupt &h60

‘Градуировочная таблица термопары TXA

data 1,2.02,3.06,4.1,5.13,6 13,7.13,8.13,9.14

data 10.15,11.18,12 21,13.25,14.3,15.35,16.4,17.46,18.51,19 58

data 31.24,32 29,33 32,34.34,35 36,36.37,37 37,38.37,39 36,40.35

data 41 32,42 29,43 26,44.2,45 16,46.1,47 03,47.96,48 87,49 77

——if n>52 then exit loop

—if n>48 then print «Температура выше +1200 С !»:goto finish

После этого вновь соединяют перемычкой зажимы Х1, Х2, а с транзистора VT1 и стабилитрона VD1 перемычки удаляют Транзистор VT1 временно извлекают из приставки, соединяют с ней отрезками монтажного провода длиной 200 .300 мм и, тщательно изолировав места пайки, помещают в водонепроницаемый контейнер из алюминиевой фольги. Изготавливают его следующим образом взяв лист фольги размерами примерно 200×200 мм, дважды сгибают его пополам отгибают один из крайних листов, чтобы получился своеобразный футляр, и помещают в него транзистор. Фольгу соединяют с общим проводом приставки.

Далее достают из морозильника заранее заготовленные ледяные кубики и, раскрошив их ножом, заливают водой до консистенции кашицы. Опустив в нее футляр с транзистором VT1, ждут, когда стабилизируется напряжение на выводе 6 DA1. После этого “обнуляют” его с помощью подстроечного резистора R3. Затем опускают футляр с транзистором VT1 в слабо кипящую воду.

Дождавшись стабилизации выходного напряжения DA1, устанавливают его (подстроечным резистором R10) равным усиленному напряжению термопары для температуры + 100 °С. В заключение отпаивают соединительные провода, смазывают корпус транзистора VT1 клеем “Момент”, вставляют в зазор между зажимами Х1 и Х2 и припаивают его выводы к печатным проводникам. С зажимами термопару соединяют компенсирующим проводом.

Текст рабочей программы, использующей выходные данные программного частотомера, зависит от конкретного применения. Ниже приводится фрагмент управляющей программы, написанной на Turbo Basic, который линеаризует передаточную характеристику термопары ТХА, используя градуировочную таблицу [3].

В заключение следует сказать, что программа WWOD.СОМ практически не мешает нормальной работе ПК. Единственный замеченный недостаток — невозможность выполнить форматирование гибкого диска. Если в этом возникнет необходимость, можно перезагрузить ОС без загрузки WWOD.COM или ввести дополнительную функцию прерывания INT60h, которая позволит оперативно включать или выключать функционирование резидентной части WWOD.COM.

После небольшой модификации текста WWOD.ASM ПК может опрашивать несколько аналогичных каналов измерения, подключенных к параллельному порту.

Выше уже отмечалось, что описанная система позволяет выполнять два измерения в секунду, чего вполне достаточно для таких объектов регулирования, как термошкаф или электропечь. При необходимости быстродействие системы, требуемое для контроля реального объекта, можно определить, руководствуясь, например, материалами, приведенными в [4].

Проблемы при создании осциллографа

Проблемы могут возникнуть как у новичка, так и у того, кто знает, как из обычного домашнего компьютера сделать осциллограф на практике. Чтобы минимизировать шансы, лучше изучить всю теорию перед работой или настройкой, а также купить материалы с запасом, если есть необходимость изготовить приставку.

  1. Проблемы со схемой. Схема для простейшего осциллографа лёгкая сама по себе, но если возникают сложности, можно воспользоваться видеогайдами.
  2. Программы не устанавливаются. Если программное обеспечение отказывается работать на компьютере, проверьте совместимость (соответствие требованиям операционной системы, наличие всех необходимых деталей в ПК).
  3. Результат не выводится на экран. Это проблема внутренней настройки — укажите корректный путь, чтобы сохранение и воспроизведение результатов анализа шли корректно.

Большинство возникающих проблем легко решить последующими попытками, минимальными теоретическими знаниями и опытом — стоит только набраться немного терпения.

Схема

Вот схема частотомера 100МГц, компоновка которой соответствует схеме макетной платы:

Схема частотомера 100МГц на базе ATtiny414

В качестве дисплея используется модуль OLED 128×32 I2C с драйвером SSD1306. Для прототипа я взял дисплей Adafruit 2 , хотя вполне подойдет и любой аналог с AliExpress 3 . Резистор 33кОм и конденсатор 0.1мкФ обеспечивают корректный сброс дисплея при первой подаче питания, хотя они могут и не понадобиться.

В качестве резонатора служит кристалл 32.768кГц с точностью 20ppm и емкостной нагрузкой 12.5пФ 4 . Для вычисления значений конденсатора я использовал формулу С = 2(СL – CS), где СL представляет емкостную нагрузку 12.5пФ, а CS паразитную емкость, которая на макетной плате достигает, вероятно, 5пФ, давая С = 15пФ. На печатной же плате ее значение, возможно, составит 2.5пФ.

В роли процессора выступил ATtiny414 в 14-контактном корпусе SOIC 5 , который я установил на коммутационную плату – подходящий вариант есть у Adafruit 6 . Проект можно также реализовать на базе ATtiny814 или ATtiny1614 с бОльшим объемом памяти, но не на ATtiny404, поскольку в нем нет поддержки внешнего кристалла RTC.

Простой частотомер на микросхеме своими руками — характеристики и схема

Параметры предлагаемого частотомера приведены в следующей таблице:

Режим работы Частотомер Частотомер Цифровая шкала
Диапазон измерений 1 Гц…20 МГц 1–200 МГц 1–200 МГц
Дискретность 1 Гц 10 Гц 100 Гц
Чувствительность 40 мВ 100 мВ 100 мВ

Данный частотомер обладает целым рядом преимуществ по сравнению с предшествующими:

  • современная дешевая и легко доступная элементная база;
  • максимальная измеряемая частота — 200 МГц;
  • совмещение в одном приборе частотомера и цифровой шкалы;
  • возможность увеличения максимальной измеряемой частоты до 1,2 ГГц при незначительной доработке входной части прибора;
  • возможность коммутации во время работы до 4 ПЧ.

Входной сигнал через конденсатор С4 поступает на базу транзистора VT1, который усиливает входной сигнал до уровня, необходимого для нормальной работы микросхемы DD2. Микросхема DD2 193ИЕЗ представляет собой высокочастотный делитель частоты, коэффициент деления которого равен 10.

Ввиду того что в используемом микроконтроллере К1816ВЕ31 максимальная частота счетного входа Т1 f=Fкв/24, где Fкв — частота используемого кварца, а в частотомере Fкв=8,8672 МГц, сигнал с высокочастотного делителя поступает на дополнительный делитель частоты, представляющий собой десятичный счетчик DD3. Процесс измерения частоты начинается с обнуления делителя DD3, сигнал сброса которого поступает с вывода 12 микроконтроллера DD4. Сигнал разрешения прохождения измеряемого сигнала на десятичный делитель поступает с вывода 13 DD4 через инвертор DD1.1 на вывод 12 DD1.3.

По окончанию фиксированного интервала времени измерения на выводе 13 DD4 появляется высокий уровень, который через инвертор DD1.1 запрещает прохождение измеряемого сигнала на делитель DD3, и начинается процесс преобразования накопленных импульсов времени в частоту, а также подготовка данных для вывода на индикацию.

Принципиальная схема частотомера и необходимые детали

Принципиальная схема частотомера

Список необходимых радиоэлементов:

  • 6 микросхем — DD1 (К555ЛА3); DD2 (К193ИЕ3); DD4 (КР1816ВЕ31); DD5, DD7 (2хК555ИР22); DD6 (К555ИД7); DD8 (К573РФ2).
  • Логическая ИС (DD3) — К555ИЕ19.
  • 17 биполярных транзисторов (VT1, VT2–VT17) — КТ368А и 16хКТ361В
  • Стабилитрон (VD1) — КС113А.
  • 7 конденсаторов — С1 (0.01 мкФ); С2, С8 (2х0.1 мкФ); С3 (56 пФ); С4 (1000 пФ); С5 (22 пФ); С6 (12 пФ).
  • Подстроечный конденсатор (С7) — 5-20 пФ.
  • Электролитический конденсатор (С9) — 3.3 мкФ.
  • 41 резистор — R1 (51 Ом); R2, R25–R40 (17х68 кОм, R2 по ошибке в схеме указана как R3); R3 (10 кОм); R4, R6 (2х560 Ом); R5 (33 Ом); R6, R7 (2х1 кОм, в схеме по ошибке два резистора R6); R8–R23 (16х20 кОм); R24 (2 кОм).
  • Кварцевый резонатор (ZQ1) — 8.86 МГц.
  • Вакуумно люминисцентный индикатор (HL1) — ИВ-18.
  • Переключатель (S1)
  • Блок переключателей (S2)

Программа работы микроконтроллера находится в ПЗУ DD8, микросхема DD5 используется для мультиплексирования адресов микроконтроллера. Прошивка ПЗУ для работы прибора в качестве частотомера приведена в таблице:

Таблица с прошивкой ПЗУ

Для получения максимальной эффективности использования микроконтроллера в приборе применена динамическая индикация.

При использовании частотомера в качестве цифровой шкалы на вывод 22 DD8 необходимо с помощью переключателя S2.3 подать высокий уровень. Выбор значения ПЧ производится путем соединения выводов 10,11 микросхемы DD4 с землей. Вход 3 (вывод 5) платы частотомера предназначен для включения выбранной промежуточной частоты (например, при переходе с приема на передачу). Во время работы прибора в режиме цифровой шкалы младшие разряды индикатора показывают сотни герц. Работе прибора в режиме цифровой шкалы соответствует иная прошивка ПЗУ.

Печатная плата частотомера и рекомендации по монтажу своими руками

Печатная плата частотомера:

Печатная плата частотомера

Печатная плата частотомера

Печатная плата частотомера

Печатная плата изготовлена из двухстороннего стеклотекстолита размерами 100х130 мм. Индикатор крепится непосредственно на печатной плате двумя хомутами из обычного монтажного провода. Для установки микросхемы DD8 предусмотрена панелька. При разводке платы предусматривалась необходимость размещения транзистора VT1 в максимальной близости к DD2.

Вокруг VT1 и DD2 оставлено возможно большее количество фольги с обеих сторон с целью экранирования высокочастотных цепей. В конструкции в качестве индикатора HL1 применен ИВ-18 как наиболее популярный в радиолюбительских конструкциях. В случае необходимости миниатюризации конструкции индикатор ИВ-18 может быть заменен на ИВ-21, который имеет значительно меньшие габаритные размеры. В этом случае необходимо уменьшить напряжение накала и отрицательное напряжение на катоде согласно паспортным данным. Микросхему DD1 желательно применять серии 1533 как более высокочастотную.

Для питания частотомера используется блок питания с напряжением от -20 В до -30 В и напряжением накала — до 4,8 В при использовании индикатора ИВ-18. В указанной схеме блока питания желательно диод КД503 заменить на стабилитрон КС133, что исключает ложную подсветку сегментов индикатора.

Наладку частотомера следует начинать с проверки на обрыв всех без исключения соединительных проводников печатной платы, затем проверить на отсутствие замыкания соседних на печатной плате соединительных проводников. Сразу же после подачи питания на частотомер проконтролируйте ток потребления по напряжению +5 В. Он не должен превышать 250 мА.

Затем измерьте напряжение на коллекторе VT1, оно должно находиться в пределах 2,0–3,0 В. Установка указанного напряжения осуществляется подбором резистора R3. При безошибочном монтаже, исправных деталях и отсутствии ошибок в программе окончательное налаживание прибора заключается в точной установке частот задающего генератора микроконтроллера с помощью конденсатора С7 в соответствии с показаниями образцового частотомера.

Благодаря программно-управляемому процессу измерения можно путем незначительного изменения программы микроконтроллера применять недесятичные высокочастотные делители. Были опробованы в данном приборе микросхемы 193ПП1 (коэффициент деления — 704), 193ИЕ6 (коэффициент деления — 256). Испытания показали, что максимальная частота измеряемого сигнала достигает значения 1 ГГц. Наиболее предпочтительной оказалась микросхема 193ПЦ1, поскольку она имеет входной усилитель. Микроконтроллер К181ВЕ51 можно заменить на К1816ВЕ31, К1830ВЕ31, К1830ВЕ51 или их зарубежные аналоги — 8031, 80С31. При отсутствии микросхемы 193ИЕЗ можно заменить ее К500ИЕ137, включив ее по типовой схеме.

Видео, как собрать частотомер на одной микросхеме:


Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector