Ремонт блока питания компьютера

РЕМОНТ БП ATX САМОМУ

Возможно некоторые заметят, что в большинстве случаев БП ATX проще и дешевле выкинуть и купить новый за 20 – 30уе, а не ремонтировать испорченный, но это будет верно лишь в некоторых случаях. Очень часто сгорает копеечная деталь на пол доллара, и найти и заменить её дело пары часов. Недавно сидел и смотрел по компьютеру фильм «Ипман» и чувствую – воняет палёным. Сначала думал что-то на кухне пригорело, но когда комп вырубился на самом интересном месте понял – это был БП. Сомнения окончательно рассеялись лишь только прикоснулся к задней стенке БП ATX – сковородка!

Раскручиваю, отсоединяю, вытаскиваю и вижу слегка обуглившийся участок платы у мощных 30-ти амперных выпрямительных диодов. Прозвонка подтвердила – вылетел один из них. Иду на базар, покупаю новый, впаиваю, включаю – всё работает. Только кулер не крутится, настолько пылью забился, от того и диоды перегрелись. Так что делаем два вывода: Надо чистить вентиляторы и компьютерный БП таки имеет в некоторых случаях смысл ремонтировать.

Во время ремонта следует включать блок питания ATX в сеть 220В через разделительный трансформатор изготовленный из двух ТС-180 (ТС-160). Питание на сеть первого, анодную обмотку на аналогичную анодную второго и сеть второго на БП. Мощность такого источника вполне достаточна для безопасного ремонта. Схемы популярных моделей БП АТХ и книгу с описанием принципа действия блоков питания смотрим на сайте.

Итак, сгорел БП ATX, а начит приступаем к ремонту. Прежде всего конечно проверяем внутренний плавкий предохранитель. Открыв корпус, его можно заменить, но в большинстве случаев замена ничего не даст – если не устранена основная неисправность, перегорит и новый предохранитель. Перегорание предохранителя может свидетельствовать о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.

советы по ремонту БП ATX

Высоковольтные конденсаторы. Для проверки их надо выпаивать из платы, чтоб испытать на ток утечки. Конденсатор проверяют мультиметром в режиме омметра. Сопротивление должно плавно увеличиваться. Скорость увеличения сопротивления зависит от ёмкости конденсатора. Чем больше ёмкость, тем медленнее увеличивается сопротивление. Но можно не выпаивая их, проверить на короткое замыкание. Неэлектролиты особого смысла проверять нет – эти конденсаторы очень редко выходят из строя.

Трансформатор нужно проверить на сопротивление обмоток и на пробой между ними. Проверка всех диодов. Падение напряжения должно быть от 0,05 до 0,7 В. Если падение – ноль, выпаиваем диод одной ногой и проверяем. Если всё равно ноль, значит он пробит.

Осматриваем БП, обращая внимание на поврежденные, потемневшие или сгоревшие детали. Проверяем сопротивление термистора, оно должно быть не более 10 Ом. Ключевые транзисторы проверяем мультиметром по падению напряжения на переходах б-к и б-э в обоих направлениях. В исправном биполярном транзисторе переходы должны звониться как диоды. Силовые транзисторы, типа D209 можно заменить на MJE13009. Выходные диодные сборки по каналам +3.3В, +5В заменимы на STPS4045, MBR20100. Проверяем выходные электролитические конденсаторы. Измеряем выходное сопротивление между общим проводом и выходами блока питания +5В и +12В. должно быть в районе 100-30 Ом, по каналу +3.3В – около 5-20 Ом.

РЕМОНТ БП ATX СВОИМИ РУКАМИ

Берём лампочку накаливания на 100 Ватт и впаиваем в разрыв сетевого провода. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверить схему дежурного режима. Измеряем напряжение дежурного источника, нагруженного на лампочку 6В 1А. Проверка микросхемы TL494. На выводе 12 у неё должно быть 12-30V. Если нет проблема с дежурным источником, если есть – проверяем напряжение на выводе 14 TL494 – должно быть +5В. Проверяем напряжение на выводе 4 при замыкании PS ON на землю. До замыкания должно быть порядка 3-5В, после – 0В. Отсутствует? Меняем микросхему. В качестве нагрузки БП следует использовать мощные галогенные лампы на 12В. Между выводом PS ON и GND подключаем кнопку для включения блока питания.

Источник питания ATX имеет встроенные регулировки напряжения, которое калибруется и устанавливается при изготовлении. Через какое-то время параметры некоторых узлов могут измениться, тогда изменятся и выходные напряжения. Если дело обстоит именно так, можно настройкой снова установить правильные значения напряжений. Надо найти для каждого напряжения свой подстроечный резистор, а затем измерять выходное напряжение, по очереди изменяя положение органов управления каждого подстроечного устройства, пока не увидите изменение напряжения. Если вы изменяете положение органов управления подстроечного устройства, а наблюдаемое вами напряжение не изменяется, восстановите положение в исходную позицию.

Практика

Разберите блок, снимите плату и разрядите конденсаторы сетевого выпрямителя лампой накаливания.

Шаг 1

Начинаем с внешнего осмотра. На этом этапе выявляются вздутые конденсаторы, сгоревшие элементы схемы – варисторы, резисторы. Также нужно внимательно осмотреть плату с обратной стороны для выявления плохой пайки или подгоревших участков. Обнаруженные детали заменяются, плата очищается и пропаивается. Соблюдайте полярность при установке элементов.

Проверьте, насколько легко вращается вентилятор охлаждения, зачастую именно он является причиной перегрева блока.

Шаг 2

Проверяем сетевой предохранитель, диоды моста выпрямителя. Если предохранитель сгоревший, в цепи есть короткое замыкание, которое нужно найти и устранить. Для этого проверяем отдельно каждый диод моста выпрямителя. Помните, диод может быть не только пробит, но и иметь незначительную утечку в обратном направлении – при проверке отпаивайте один контакт элемта.

Исправный мост должен иметь бесконечное сопротивление на входе. На выходе моста, при подключении тестера, сопротивление должно измениться от низкого до высокого. Это происходит из-за заряда подключенных параллельно конденсаторов.

Шаг 3, если есть схема активного PFC

Транзисторы ключей схемы PFC (см. схему в первой части) подключены через дроссель параллельно выпрямителю напряжения сети. При пробое транзисторов вход оказывается закороченным и сгорает предохранитель. Как правило, вместе с ключами выходят из строя резисторы, подключенные к затворам и микросхема PWM-контроллера. Как проверить работу схемы PFC, рассмотрим ниже.

Шаг 4

Проверяем транзисторы ключей преобразователя. Транзисторы подключены таким образом, что пробой одного из них может не вызвать замыкания питания и сгорания предохранителя, при этом блок питания просто не запускается.

Причиной неисправности в этом узле часто служат электролитические конденсаторы, подключенные к базе. При их утечке или потере емкости, транзистор переходит из ключевого режима работы в усилительный, что вызывает перегрев элемента.

Ремонт блока питания компьютера

Эти элементы и конденсатор, обозначенный синим кругом на схеме выше, также являются причиной потери выходной мощности блока питания компьютера. При этом подключенный к системной плате блок не запускается, а без нагрузки работает. Из-за неисправности этих конденсаторов повышаются пульсации на выходе блока питания, что приводит к перезагрузкам и сбоям в работе системы. Эти элементы нужно обязательно выпаивать и проверять.

Если пробиваются транзисторы ключей, резисторы и диоды, подключенные к базе, часто также сгорают.

Шаг 5

Неисправность, рассмотренная в предыдущем шаге, зачастую вызвана завышенным напряжением питающей сети. Источник питания +5в дежурного режима работает постоянно и из-за скачков напряжения страдает первым. Наступила очередь его проверки.

При пробое силового транзистора нужно проверить, а лучше вообще заменить на заведомо исправные все полупроводниковые элементы схемы – транзисторы, диоды, оптопару. Затем проверяем все резисторы и конденсаторы, выпаивая их по очереди. Почему все?

Это очень капризная и важная часть блока питания, от нее запитана микросхема ШИМ-контроллера и схема включения материнской платы. При выходе источника из режима стабилизации, на эти узлы подается завышенное напряжение, что в лучшем случае приводит к сгоранию ШИМ-контроллера блока, а в худшем – потере материнской платы.

Второй случай, когда источник не запускается, +5 дежурного на выходе просто нет. Начальное напряжение для запуска схема получает через резисторы, подключенные к +310в. Зачастую они подгорают, изменяя значение своего сопротивления на гораздо большее, хотя внешне выглядят исправными. Учитывая высокие значения сопротивления резисторов при проверке детали нужно обязательно выпаивать.

Схема также может не запускаться из-за замыкания или перегрузки выходных цепей. Виновником этого может быть пробитый диод выпрямителя, сгоревший ШИМ-контроллер или устанавливаемый в качественных блоках питания защитный стабилитрон.

Ремонт блока питания компьютера

Всегда проверяйте конденсатор, обозначенный на схеме выше восклицательными знаками. От его исправности зависит значение выходного напряжения блока питания, а расположен он в зоне с повышенной рабочей температурой. Если в схеме блока не установлен защитный стабилитрон, именно из-за этого конденсатора выходит из строя материнская плата.

Шаг 6

Переходим к выпрямителям выходных напряжений. Выпрямители собраны на спаренных диодах, проверяем от центрального вывода оба крайних на наличие пробоя. Нужно обязательно проверить все элементы схемы стабилизатора 3.3в, потому что блоки с микросхемой ШИМ-контроллера TL494 не имеют обратной связи для контроля этого выхода. Блок питания будет запускаться вхолостую, но не работать под нагрузкой.

Также проверьте диоды выпрямителей для напряжений -5в, -12в. Учитывайте, что каждый выход блока нагружен низкоомным резистором, если появились сомнения в исправности одного из диодов, элемент лучше выпаять.

Шаг 7

Добрались до микросхемы ШИМ-контроллера. Возможности проверки исправности микросхемы без включения блока питания ограничены. Но, если в шаге 5, были обнаружены какие либо неисправности, а тем более, если при внешнем осмотре найден сгоревший резистор в цепи питания ШИМ-контроллера, микросхему нужно заменить заведомо исправной.

Выходы микросхемы подключены к двум транзисторам (C945 или 2N2222), если меняете микросхему, проверьте их также.

Шаг 8

После устранения всех неисправностей обнаруженных в предыдущих шагах, блок можно подключить к питающей сети, конечно при соблюдении всех мер предосторожности.

Если при подключении сгорел сетевой предохранитель – возвращаемся к шагу 1 и следующим, чтобы найти пропущенную неисправность.

Измеряем значение напряжения дежурного режима +5в на 9 ( фиолетовый ) контакте разъема. Подключаем нагрузку, подойдет резистор сопротивлением 3-4Ом мощностью около 7Ватт. Снова измеряем напряжение.

Ремонт блока питания компьютера

Если блок питания выдает заниженное значение (4.3в — 4.8в) нужно заменить оптопару, TL431 и электролитические конденсаторы схемы стабилизатора. Напряжения нет вообще, повторяем шаг 5.

При нормальной работе источника дежурного питания, напряжение на входе PS ON (14, зеленый ) в пределах 2.3-5в, на остальных– 0в. Замыкаем 14 и 15 контакты перемычкой, блок должен запуститься.

Если старта не произошло, возвращаемся к шагу 4. Возможна ситуация, когда блок питания запустился на короткий промежуток времени, при этом дернулся вентилятор. Это происходит при неисправности выходных выпрямителей или микросхемы ШИМ-контроллера, снова проходим шаги 6 и 7.

Для блоков с системой активной PFC на этом этапе нужно проверить работоспособность схемы. Измеряем напряжение на конденсаторе сетевого выпрямителя, схема PFC поддерживает его значение в пределах 380-400в, если прибор показывает 310в – схема не работает и нужно повторить шаг 3.

У запущенного блока измеряем напряжение на выходе PG (8, серый ), правильное значение +5в. Затем проверяем все выходные напряжения — +12в, -12в, +5в, -5в, +3.3в. Нагружать при тестировании все выходы блока было бы правильно, но часто проблематично. Поэтому можно ограничиться нагрузкой каждого выхода по-отдельности. Для нагрузки можно использовать автомобильные лампы накаливания подходящей мощности.

Компьютер после ремонта блока питания обязательно нужно тестировать в течение 3-6 часов.

Практические рекомендации по ремонту

Блок питания - очень важный компонент любого компьютера, именно поэтому важно знать, как ремонтировать

Если принято решение самостоятельно починить источник питания, в первую очередь он извлекается из корпуса системного блока. После выкручиваются крепёжные винты и снимается защитный кожух. Продув и почистив от пыли, приступают к его изучению. Практический ремонт блока питания компьютера своими руками пошагово можно представить следующим образом:

  1. Внешний осмотр. При нём особое внимание уделяется почерневшим местам на плате и элементах, внешнему виду конденсаторов. Верхушка конденсаторов должна быть плоской, выпуклость говорит о его негодности, внизу у основания не должно быть подтёков. Если имеется кнопка включения, не лишним будет провести её проверку.
  2. Если осмотр не вызвал подозрений, то следующим шагом будет прозвонка входных и выходных цепей на присутствие короткого замыкания (КЗ). При присутствии короткого замыкания выявляется пробитый полупроводниковый элемент, стоящий в цепи с КЗ.
  3. Измеряется сетевое напряжение на конденсаторе выпрямительного блока и проверяется предохранитель. В случае наличия напряжения 300 B переходим к следующему этапу.
  4. Если напряжение отсутствует, при этом сгорает предохранитель, проверяется диодный мост, ключевые транзисторы на короткое замыкание. Резисторы и защитный терморезистор на обрыв.
  5. Проверяется присутствие дежурного напряжения, стабилизированных пяти вольт. Статистика свидетельствует, что когда устройство питания не включается, одна из наиболее распространённых причин, это неисправность схемы дежурного питания, при работоспособных силовых элементах.
  6. Если стабилизированные пять вольт присутствуют, проверяется наличие PS_ON. Когда значение менее четырёх вольт, ищется причина занижения уровня сигнала. Обычно PS_ON формируется от дежурного напряжения через подтягивающий резистор номиналом 1 кОм. Проверяется цепь супервизора, прежде всего на соответствие в цепи значений ёмкости конденсаторов и номиналы резисторов.

В случае, если причина не найдена, проверяется ШИМ контроллер. Для этого понадобится стабилизированный прибор питания на 12 вольт. На плате отключается нога микросхемы, отвечающая за задержку (DTC), а питание источника подаётся на ногу VCC. Осциллографом смотрится наличие генерации сигнала на выводах, подключённых к коллекторам транзисторов, и присутствие опорного напряжения. Если импульсы отсутствуют проверяется промежуточный каскад, собранный чаще всего на маломощных биполярных транзисторах.

Все своими руками

Схемы компьютерных блоков питания ATX

Приветствую. Мне довольно часто приходиться ремонтировать различные блоки питания, в том числе и компьютерные. За долгое время практики накопилось достаточное количество схем компьютерных блоков питания, собственно которой я хочу поделиться.
Это блоки питания ATX, которые часто переделывают под регулируемые блоки питания или же под зарядные устройства. Вот все схемы, что смог собрать со своего компьютера

Схема Delta Electronics DPS-260-2A-2

Схема Delta Electronics DPS-260-2A-2

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-200PB-59

Схема Delta Electronics DPS-200PB-59

Схема SevenTeam ST-230WHF

Схема SevenTeam ST-230WHF

Схема SevenTeam ST-200HRK

Схема SevenTeam ST-200HRK

Схема PowerMaster LP-8

Схема PowerMaster LP-8

Схема PowerMaster FA-5-2

Схема PowerMaster FA-5-2

Схема Linkworld 200W, 250W и 300W

Схема Linkworld 200W, 250W и 300W

Схема Linkworld 200W, 250W и 300W 2

Схема Linkworld 200W, 250W и 300W 2

Схема KME PM-230W

Схема KME PM-230W

Схема JNC SY-300ATX

Схема JNC SY-300ATX

Схема JNC LC-B250ATX

Схема JNC LC-B250ATX

Схема JNC LC-250ATX

Схема JNC LC-250ATX

Схема ISO-450PP

Схема InWin IW-P300A2-0

Схема InWin IW-P300A2-0

Схема Green Tech MAV-300W-P4

Схема Green Tech MAV-300W-P4

Схема FSP145-60SP

Схема Enlight HPC-250 и HPC-350

Схема Enlight HPC-250 и HPC-350

Схема DTK PTP-2038

Схема DTK PTP-2038

Схема Codegen 300X 300W

Схема Codegen 300X 300W

Схема Power-Man-IP-P550DJ2-0

Схема PowerLink LPJ2-18 300W

Схема PowerLink LPJ2-18 300W

Схема Maxpower PX-300W

Схема Maxpower PX-300W

Схема LWT 2005

Схема Codegen 200XA1 250XA1 CG-07A CG-11

Схема Codegen 200XA1 250XA1 CG-07A CG-11

Схема TX-450P-DNSS

Схема Sunny ATX-230

Схема Sunny ATX-230

Схема Shido LP-6100 ATX-250W

Схема Shido LP-6100 ATX-250W

Схема AcBel API4PC01 400W

Схема AcBel API4PC01 400W

Схема Shido ATX-250W-LP-6100

Схема Shido ATX-250W-LP-6100

Я думаю многим поможет данная подборка в поисках своей схемы блока питания ATX, а если у вас есть другие схемы блоков питания, добавьте свой комментарий с ссылкой откуда скачать схему.
Если нравятся мои статьи, подписывайтесь на обновления и уведомления в Вконтакте или Одноклассниках, или же можете подписаться на обновления по электронной почте в колонке справа
С ув. Эдуард

Уважаемые читатели. Дело в том, что сборка моих проектов занимает очень много времени, не простительно много удерживаю средств из семейного бюджета и больше этого делать не буду. Если вам нравиться то, чем я тут занимаюсь и хотите продолжения, то прошу поддержки с вашей стороны. Будет поддержка, будет много нового(чертежи и схемы уже лежат).Поддержать можно тут

Способ 3. Проверка БП тестером без компьютера

С помощью тестера можно проверить работоспособность блока питания без помощи компьютера и мультиметра.

Я приобрел себе такой тестер. Когда вызывают на заявку и говорят, что компьютер совсем не включается, то я беру тестер с собой для диагностики блока питания.

Тестер БП

Тестер компьютерного блока питания

Купить тестер БП можно по — этой ссылке

Подключаю блок питания к тестеру, как на фото ниже. Включаю кабель в розетку и смотрю. Если БП сгорел, то на тестере экран не загорится. Если тестер пикнул и загорелся экран с показаниями, значит БП рабочий, но нужно ещё проверить показания.

Проверка тестером БП

Проверка БП тестером

Смотрим показания на тестере слева направо:

  • -12V — 11.8
  • +12V2 — 12.3
  • 5VSB — 5.0
  • PG — 280 ms, это время задержки включения
  • +5V — 5.0
  • +12V1 — 12.3
  • +3.3V — 3.3

И сравниваем с таблицей допустимых значений.

  • +12V1 (желтый провод) — используется на основном 24-pin коннекторе для материнской платы.
  • +12V2 (желтый) — используется на 4-8 pin коннекторе для процессора.
  • +5V (красный) — служит для подачи напряжения на жесткие диски, оптического привода, дисководы и другие устройства.
  • +3.3V (оранжевый) — используется для подачи питания на платы расширения, присутствует в коннекторе SATA для подключения жестких дисков и SSD.
  • -12V (синий) — не используется на современных компьютерах.
  • +5VSB (фиолетовый) — дежурное напряжение.

Как видно из таблицы все показания тестера в норме.

Для разницы, на видео заснял, как с помощью этого тестера можно определить брак нового блока питания. Но при этом сам БП работает, компьютер включается. Проверил БП тестером, значение PG (Power Good) мигает — 0 и пикает. На исправных БП значение PG должно показывать 100-300ms.

Признали брак, поменял блок питания довольно быстро, так как не прошло 2 недель с момента покупки. Без тестера, в течении недели на врядли бы заметил, что БП с браком.

Схема типа АТХ блока питания

Как отремонтировать компьютерный БП?

Как отремонтировать компьютерный БП? Как отремонтировать компьютерный БП? Как отремонтировать компьютерный БП?

Наиболее безопасно и удобно включать ремонтируемый блок в сеть через разделительный трансформатор 220v — 220v.
Такой трансформатор просто изготовить из 2-х ТАН55 или ТС-180 (от ламповых ч/б телевизоров). Просто соответствующим образом соединяются анодные вторичные обмотки, не надо ничего перематывать. Оставшиеся накальные обмотки можно использовать для построения регулируемого БП.
Мощность такого источника вполне достаточна для отладки и первоначального тестирования и дает массу удобств:
— электробезопасность
— возможность соединять земли горячей и холодной части блока единым проводом, что удобно для снятия осциллограмм.
— ставим галетный переключатель — получаем возможность ступенчатого изменения напряжения.

Также для удобства можно зашунтировать цепи +310В резистором 75K-100K мощностью 2 — 4Вт — при выключении быстрее разряжаются входные конденсаторы.

Если плата вынута из блока, проверьте, нет ли под ней металлических предметов любого рода. Ни в коем случае НЕ ЛЕЗЬТЕ РУКАМИ в плату и НЕ ДОТРАГИВАЙТЕСЬ до радиаторов во время работы блока, а после выключения подождите около минуты, пока конденсаторы разрядятся.

На радиаторе силовых транзисторов может быть 300 и более вольт, он не всегда изолирован от схемы блока!

Принципы измерения напряжений внутри блока.

Обратите внимание, что на корпус БП земля с платы подаётся через проводники около отверстий для крепежных винтов.
Для измерения напряжений в высоковольтной («горячей») части блока (на силовых транзисторах, в дежурке) требуется общий провод — это минус диодного моста и входных конденсаторов. Относительно этого провода всё и измеряется только в горячей части, где максимальное напряжение — 300 вольт. Измерения желательно проводить одной рукой.
В низковольтной («холодной») части БП всё проще, максимальное напряжение не превышает 25 вольт. В контрольные точки для удобства можно впаять провода, особенно удобно припаять провод на землю.

Проверка резисторов.

Если номинал (цветные полоски) еще читается — заменяем на новые с отклонением не хуже оригинала (для большинства — 5%, для низкоомных в цепях датчика тока может быть и 0.25%). Если же покрытие с маркировкой потемнело или осыпалось от перегрева — измеряем сопротивление мультиметром. Если сопротивление равно нулю или бесконечности — вероятнее всего резистор неисправен и для определения его номинала потребуется принципиальная схема блока питания либо изучение типовых схем включения.

Проверка диодов.

Если мультиметр имеет режим измерения падения напряжения на диоде — можно проверять, не выпаивая. Падение должно быть от 0,02 до 0,7 В (в зависимости от тока, протекаемого через него). Если падение — ноль или около того (до 0,005) – выпаиваем сборку и проверяем. Если те же показания – диод пробит. Если же прибор не имеет такой функции, установите прибор на измерение сопротивления (обычно предел в 20 кОм). Тогда в прямом направлении исправный диод Шотки будет иметь сопротивление порядка одного — двух килоом, а обычный кремниевый — порядка трех — шести. В обратном направлении сопротивление равно бесконечности.

Для проверки БП можно и нужно собрать нагрузку.

Распиновка разъема ATX 24 pin, с проводниками ООС по основным каналам — +3,3V; +5V; +12V.

Азбука молодого ремонтника компьютерного БП

Показан «максимальный» вариант — проводники ООС бывают не во всех блоках, и не навсех каналах. Самый распространённый вариант ООС по +3,3V (коричневый провод). В новых блоках может отсутствовать выход -5V (белый провод).
Берём выпаянный из ненужной платы ATX разъём и припаиваем к нему провода сечением не менее 18 AWG, стараясь задействовать все контакты по линиям +5 вольт, +12 и +3.3 вольта.
Нагрузку надо рассчитывать ватт на 100 по всем каналам (можно с возможностью увеличения для проверок более мощных блоков). Для этого берём мощные резисторы или нихром. Также с осторожностью можно использовать мощные лампы (например, галогенные на 12В), при этом следует учесть, что сопротивление нити накаливания в холодном состоянии сильно меньше, чем в нагретом. Поэтому при запуске с вроде бы нормальной нагрузкой из ламп блок может уходит в защиту.
Параллельно нагрузкам можно подключить лампочки или светодиоды, чтобы видеть наличие напряжения на выходах. Между выводом PS_ON и GND подключаем тумблер для включения блока. Для удобства при эксплуатации можно всю конструкцию разместить в корпусе от БП с вентилятором для охлаждения.

Проверка блока:

Можно предварительно включить БП в сеть, чтобы определиться с диагнозом: нет дежурки (проблема с дежуркой, либо КЗ в силовой части), есть дежурка, но нет запуска (проблема с раскачкой или ШИМ), БП уходит в защиту (чаще всего — проблема в выходных цепях либо конденсаторах), завышенное напряжение дежурки (90% — вспухшие конденсаторы, и часто как результат — умерший ШИМ).

Начальная проверка блока

Снимаем крышку и начинаем проверку, особое внимание обращая на поврежденные, изменившие цвет, потемневшие или сгоревшие детали.

Предохранитель. Как правило, перегорание хорошо заметно визуально, но иногда он обтянут термоусадочным кембриком – тогда проверяем сопротивление омметром. Перегорание предохранителя может свидетельствовать, например, о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.

Дисковый термистор. Выходит из строя крайне редко. Проверяем сопротивление — должно быть не более 10 Ом. В случае неисправности заменять его перемычкой нежелательно — при включении блока резко возрастет импульсный ток заряда входных конденсаторов, что может привести к пробою диодов входного выпрямителя.

Диоды или диодная сборка входного выпрямителя. Проверяем мультиметром (в режиме измерения падения напряжения) на обрыв и короткое замыкание каждый диод, можно не выпаивать их из платы. При обнаружении замыкания хотя бы у одного диода рекомендуется также проверить входные электролитические конденсаторы, на которые подавалось переменное напряжение, а также силовые транзисторы, т.к. очень велика вероятность их пробоя. В зависимости от мощности БП диоды должны быть рассчитаны на ток не менее 4…8 ампер. Двухамперные диоды, часто встречающиеся в дешевых блоках, сразу меняем на более мощные.

Как отремонтировать компьютерный БП?

Входные электролитические конденсаторы. Проверяем внешним осмотром на вздутие (заметное изменение верхней плоскости конденсатора от ровной поверхности к выпуклой), также проверяем емкость — она не должна быть ниже обозначенной на маркировке и отличаться у двух конденсаторов более чем на 5%. Также проверяем варисторы, стоящие параллельно конденсаторам, (обычно явно сгорают «в уголь») и выравнивающие резисторы (сопротивление одного не должно отличаться от сопротивления другого более чем на 5%).

Как отремонтировать компьютерный БП?

Ключевые (они же — силовые) транзисторы. Для биполярных — проверяем мультиметром падение напряжения на переходах «база-коллектор» и «база-эмиттер» в обоих направлениях. В исправном биполярном транзисторе переходы должны вести себя как диоды. При обнаружении неисправности транзистора также необходимо проверить всю его «обвязку»: диоды, низкоомные резисторы и электролитические конденсаторы в цепи базы (конденсаторы лучше сразу заменить на новые большей емкости, например, вместо 2.2мкФ * 50В ставим 10.0мкФ * 50В). Также желательно зашунтировать эти конденсаторы керамическими емкостью 1.0…2.2 мкФ.

Выходные диодные сборки. Проверяем их мультиметром, наиболее частая неисправность — короткое замыкание. Замену лучше ставить в корпусе ТО-247. В ТО-220 чаще помирают… Обычно для 300-350 Вт блоков диодных сборок типа MBR3045 или аналогичных на 30А — с головой.

Выходные электролитические конденсаторы. Неисправность проявляется в виде вздутия, следов коричневого пуха или потеков на плате (при выделении электролита). Меняем на конденсаторы нормальной емкости, от 1500 мкФ до 2200…3300 мкФ, рабочая температура — 105° С. Желательно использовать серии LowESR.
Также измеряем выходное сопротивление между общим проводом и выходами блока. По +5В и +12В вольтам — обычно в районе 100-250 ом (то же для -5В и -12В), +3.3В — около 5…15 Ом.

Потемнение или выгорание печатной платы под резисторами и диодами свидетельствует о том, что компоненты схемы работали в нештатном режиме и требуется анализ схемы для выяснения причины. Обнаружение такого места возле ШИМа означает, что греется резистор питания ШИМ 22 Ома от превышения дежурного напряжения и, как правило, первым сгорает именно он. Зачастую ШИМ в этом случае тоже мертв, так что проверяем микросхему (см. ниже). Такая неисправность — следствие работы «дежурки» в нештатном режиме, обязательно следует проверить схему дежурного режима.

Проверка высоковольтной части блока на короткое замыкание.

Берём лампочку от 40 до 100 Ватт и впаиваем вместо предохранителя или в разрыв сетевого провода.
Если при включении блока в сеть лампа вспыхивает и гаснет — все в порядке, короткого замыкания в «горячей» части нет — лампу убираем и работаем дальше без нее (ставим на место предохранитель или сращиваем сетевой провод).
Если при включении блока в сеть лампа зажигается и не гаснет — в блоке короткое замыкание в «горячей» части. Для его обнаружения и устранения делаем следующее:
Выпаиваем радиатор с силовыми транзисторами и включаем БП через лампу без замыкания PS-ON.
Если короткое (лампа горит, а не загорелась и погасла) — ищем причину в диодном мосте, варисторах, конденсаторах, переключателе 110/220V(если есть, его вообще лучше выпаять).
Если короткого нет — запаиваем транзистор дежурки и повторяем процедуру включения.
Если короткое есть — ищем неисправность в дежурке.
Внимание! Возможно включение блока (через PS_ON) с небольшой нагрузкой при не отключенной лампочке, но во-первых, при этом не исключена нестабильная работа БП, во-вторых, лампа будет светиться при включении БП со схемой APFC.

Проверка схемы дежурного режима (дежурки).

Краткое руководство: проверяем ключевой транзистор и всю его обвязку (резисторы, стабилитроны, диоды вокруг). Проверяем стабилитрон, стоящий в базовой цепи (цепи затвора) транзистора (в схемах на биполярных транзисторах номинал от 6В до 6.8В, на полевых, как правило, 18В). Если всё в норме, обращаем внимание на низкоомный резистор (порядка 4,7 Ом) — питание обмотки трансформатора дежурного режима от +310В (используется как предохранитель, но бывает и трансформатор дежурки сгорает) и 150k~450k (оттуда же в базу ключевого транзистора дежурного режима) — смещение на запуск. Высокоомные часто уходят в обрыв, низкоомные — так же «успешно» сгорают от токовой перегрузки. Меряем сопротивление первичной обмотки дежурного транса — должно быть порядка 3 или 7 Ом. Если обмотка трансформатора в обрыве (бесконечность) — меняем или перематываем транс. Бывают случаи, когда при нормальном сопротивлении первичной обмотки трансформатор оказывается нерабочим (имеются короткозамкнутые витки). Такой вывод можно сделать, если вы уверены в исправности всех остальных элементов дежурки.
Проверяем выходные диоды и конденсаторы. При наличии обязательно меняем электролит в горячей части дежурки на новый, припаиваем параллельно нему керамический или пленочный конденсатор 0.15…1.0 мкФ (важная доработка для предотвращения его «высыхания»). Отпаиваем резистор, ведущий на питание ШИМ. Далее на выход +5VSB (фиолетовый) вешаем нагрузку в виде лампочки 0.3Ах6.3 вольта, включаем блок в сеть и проверяем выходные напряжения дежурки. На одном из выходов должно быть +12…30 вольт, на втором — +5 вольт. Если все в порядке — запаиваем резистор на место.

Проверка микросхемы ШИМ TL494 и аналогичных (КА7500).
Про остальные ШИМ будет написано дополнительно.

  1. Включаем блок в сеть. На 12 ноге должно быть порядка 12-30V.
  2. Если нет — проверяйте дежурку. Если есть — проверяем напряжение на 14 ноге — должно быть +5В (+-5%).
  3. Если нет — меняем микросхему. Если есть — проверяем поведение 4 ноги при замыкании PS-ON на землю. До замыкания должно быть порядка 3…5В, после — около 0.
  4. Устанавливаем перемычку с 16 ноги (токовая защита) на землю (если не используется — уже сидит на земле). Таким образом временно отключаем защиту МС по току.
  5. Замыкаем PS-ON на землю и наблюдаем импульсы на 8 и 11 ногах ШИМ и далее на базах ключевых транзисторов.
  6. Если нет импульсов на 8 или 11 ногах или ШИМ греется – меняем микросхему. Желательно использовать микросхемы от известных производителей (Texas Instruments, Fairchild Semiconductor и т.д.).
  7. Если картинка красивая – ШИМ и каскад раскачки можно считать живым.
  8. Если нет импульсов на ключевых транзисторах — проверяем промежуточный каскад (раскачку) – обычно 2 штуки C945 с коллекторами на трансе раскачки, два 1N4148 и емкости 1…10мкф на 50В, диоды в их обвязке, сами ключевые транзисторы, пайку ног силового трансформатора и разделительного конденсатора.

Проверка БП под нагрузкой:

Измеряем напряжение дежурного источника, нагруженного вначале на лампочку, а потом — током до двух ампер. Если напряжение дежурки не просаживается — включаем БП, замыкая PS-ON (зеленый) на землю, измеряем напряжения на всех выходах БП и на силовых конденсаторах при 30-50% нагрузке кратковременно. Если все напряжения в допуске, собираем блок в корпус и проверяем БП при полной нагрузке. Смотрим пульсации. На выходе PG (серый) при нормальной работе блока должно быть от +3,5 до +5В.

Эпилог и рекомендации по доработке:

После ремонта, особенно при жалобах на нестабильную работу, минут 10-15 измеряем напряжения на входных электролитических конденсаторах (лучше с 40%-ой нагрузкой блока) — часто один «высыхает» или «уплывают» сопротивления выравнивающих резисторов (стоят параллельно конденсаторам ) — вот и глючим… Разброс в сопротивлении выравнивающих резисторов должен быть не более 5%. Емкость конденсаторов должна составлять минимум 90% от номинала. Так же желательно проверить выходные емкости по каналам +3.3В, +5В, +12В на предмет «высыхания» (см. выше), а при возможности и желании усовершенствовать блок питания, заменяйте их на 2200 мкф или лучше на 3300мкф и проверенных производителей. Силовые транзисторы, «склонные» к самоуничтожению (типа D209) меняем на MJE13009 или другие нормальные, см. тему Мощные транзисторы, применяемые в БП. Подбор и замена.. Выходные диодные сборки по каналам +3.3В, +5В смело меняйте на более мощные(типа STPS4045) с не меньшим допустимым напряжением. Если в канале +12В вы заметили вместо диодной сборки два спаянных диода — необходимо поменять их на диодную сборку типа MBR20100 (20А 100В). Если не найдете на сто вольт — не страшно, но ставить необходимо минимум на 80В (MBR2080). Заменить электролиты 1.0 мкф х 50В в цепях базы мощных транзисторов на 4.7-10.0 мкф х 50В. Можете отрегулировать выходные напряжения на нагрузке. При отсутствии подстроечного резистора — резисторными делителями, которые установлены от 1й ноги ШИМа к выходам +5В и +12В (после замены трансформатора или диодных сборок ОБЯЗАТЕЛЬНО проверить и выставить выходные напряжения).

Рецепты ремонта от ezhik97:

Опишу полную процедуру, как я ремонтирую и проверяю блоки.

  1. Собственно ремонт блока — замена всего что погорело и что выявилось обычной прозвонкой
  2. Модифицируем дежурку для работы от низкого напряжения. Занимает 2-5 минут.
  3. Подпаиваем на вход переменку 30В от разделительного трансформатора. Это дает нам такие плюсы, как: исключается вероятность что-нибудь спалить дорогое из деталей, и можно безбоязненно тыкать осциллографом в первичке.
  4. Включаем систему и проверяем соответствие напряжение дежурки и отсутствие пульсаций. Зачем проверять отсутствие пульсаций? Чтобы удостоверится, что блок будет работать в компьютере и не будет «глюков». Занимает 1-2 минуты. Сразу же ОБЯЗАТЕЛЬНО проверяем равенство напряжений на сетевых фильтрующих конденсаторах. Тоже момент, не все знают. Разница должны быть небольшая. Скажем, процентов до 5 примерно.
    Если больше — есть очень большая вероятность что блок под нагрузкой не запустится, либо будет выключаться во время работы, либо стартовать с десятого раза и т.п.. Обычно разница или маленькая, или очень большая. Займет 10 секунд.
  5. Замыкаем PS_ON на землю (GND).
  6. Смотрим осциллографом импульсы на вторичке силового транса. Они должны быть нормальные. Как они должны выглядеть? Это надо видеть, потому как без нагрузки они не прямоугольные. Здесь сразу же будет видно, если что-то не так. Если импульсы не нормальные — есть неисправность во вторичных цепях или в первичных. Если импульсы хорошие — проверяем (для проформы) импульсы на выходах диодных сборок. Все это занимает 1-2 минуты.

Все! Блок 99% запустится и будет отлично работать!

Если в пункте 5 импульсов нет, возникает необходимость поиска неисправности. Но где она? Начинаем «сверху»

  1. Все выключаем. Отсосом отпаиваем три ноги переходного транса с холодной стороны. Далее пальцем берем транс и просто перекашиваем его, подняв холодную сторону над платой, т.е. вытянув ноги из платы. Горячую сторону вообще не трогаем! ВСЕ! 2-3 минуты.
  2. Все включаем. Берем проводок. Соединяем накоротко площадку, где была средняя точка холодной обмотки разделительного транса с одним из крайних выводов этой самой обмотки и на этом же проводе смотрим импульсы, как я писал выше. И на втором плече так же. 1 минута.
  3. По результатам делаем вывод, где неисправность. Часто бывает что картинка идеальная, но амплитуда вольт 5-6 всего (должно быть под 15-20). Тогда уже либо транзистор в этом плече дохлый, либо диод с его коллектора на эмиттер. Когда удостоверишься, что импульсы в таком режиме красивые, ровные, и с большой амплитудой, запаивай переходной транс обратно и посмотри осцилографом на крайние ноги еще раз. Сигналы будут уже не квадратными, но они должны быть идентичными. Если они не идентичны, а слегка отличаются — это косяк 100%.

Может оно и будет работать, только вот надежности это не добавит, а уж про всякие непонятные глюки, могущие вылезти, я промолчу.

Я все время добиваюсь идентичности импульсов. И никакого разброса параметров там ни в чем быть не может (там же одинаковые плечи раскачки), кроме как в полудохлых C945 или их защитных диодах. Вот сейчас делал блок — всю первичку восстановил, а вот импульсы на эквиваленте переходного трансформатора слегка отличались амплитудой. На одном плече 10,5В, на другом 9В. Блок работал. После замены С945 в плече с амплитудой 9В все стало нормально — оба плеча 10,5В. И такое часто бывает, в основном после пробоя силовых ключей с КЗ на базу.
Похоже утечка сильная К-Э у 945 в связи с частичным пробоем (или что там у них получается) кристалла. Что в совокупности с резистором, включенным последовательно с трансом раскачки, и приводит к снижению амплитуды импульсов.

Если импульсы правильные — ищем косяк с горячей стороны инвертора. Если нет — с холодной, в цепях раскачки. Если импульсов вообще нет — копаем ШИМ.

Вот и все. По моей практике это самый быстрый из надежных способов проверки.
Некоторые после ремонта сразу подают 220В. Я от этого отказался.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector