Принцип открытой архитектуры компьютера и современные тенденции развития

Что такое архитектура компьютера

Архитектура персонального компьютера (ПК) включает в себя структуру, которая отражает состав ПК, и программное обеспечение.

Структура ПК – это набор его функциональных элементов (от основных логических узлов до простейших схем) и связей между ними.

Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов ПК, к которым относят процессор, оперативное запоминающее устройство, внешние запоминающие устройства и периферийные устройства.

Основным принципом построения всех современных ПК является программное управление.

Классическая архитектура фон Неймана

В $1946$ году американские математики Джон фон Нейман, Герман Голдштейн и Артур Бёркс в совместной статье изложили новые принципы построения и функционирования ЭВМ. На основе этих принципов производилось $1$-е и $2$-е поколение компьютеров. В следующих поколениях происходили некоторые изменения, но принципы фон Неймана (как они были названы) сохранялись.

Основные принципы фон Неймана:

  1. Использование двоичной системы счисления в ПК, в которой устройствам гораздо проще выполнять арифметико-логические операции, чем в десятичной.
  2. Программное управление ПК. Работа ПК управляется программой, которая состоит из набора команд, выполняющихся последовательно одна за другой. Создание машины с хранимой в памяти программой положило начало программированию.
  3. Данные и программы хранятся в памяти ПК. Команды и данные кодируются одинаково в двоичной системе.
  4. Ячейки памяти ПК имеют последовательно пронумерованные адреса. Возможность обращения к любой ячейке памяти по ее адресу позволила использовать переменные в программировании.
  5. Возможность условного перехода при выполнении программы. Команды в ПК выполняются последовательно, но при необходимости можно реализовать переход к любой части кода.

Основным принципом было то, что программа уже стала не постоянной частью машины, а изменяемой, в отличие от аппаратуры, которая остается неизменной и очень простой.

Фон Нейманом также была предложена структура ПК (рис. 1).

Рисунок 1. Структура ПК

В состав машины фон Неймана входили:

  • запоминающее устройство (ЗУ);
  • арифметико-логическое устройство (АЛУ), которое выполняло все арифметические и логические операции;
  • устройство управления (УУ), которое координирует действия всех узлов машины в соответствии с программой;
  • устройства ввода-вывода.

Программы и данные вводились в ЗУ из устройства ввода через АЛУ. Все команды программы записывались в ячейки памяти последовательно, а данные для обработки – в произвольные ячейки.

Команда состояла из указания операции, которую необходимо выполнить, и адресов ячеек памяти, в которых хранятся данные и над которыми необходимо выполнить нужную операцию, а также адреса ячейки, в которую необходимо записать результат (для хранения в ЗУ).

Из АЛУ результаты выводятся в ЗУ или устройство вывода. Принципиально эти устройства отличаются тем, что в ЗУ данные хранятся в удобном для обработки ПК виде, а на устройства вывода (монитор, принтер и т.п.) в удобном для человека.

От УУ на другие устройства поступают сигналы с командами, а от других устройств УУ получает информацию о результате их выполнения.

В УУ содержится специальный регистр (ячейка) – счетчик команд, в который записывается адрес первой команды программы. УУ считывает из памяти содержимое соответствующей ячейки памяти и помещает его в специальное устройство – регистр команд. УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды. Операцию выполняет АЛУ или аппаратные средства компьютера.

После выполнения команды счетчик команд увеличивается на $1$ и указывает на следующую команду программы. При необходимости выполнения команды, которая не следует по порядку за текущей, специальная команда перехода содержит адрес ячейки, в которую нужно передать управление.

Архитектура современных ПК

В основу архитектуры современных ПК заложен магистрально-модульный принцип. ПК состоит из отдельных частей – модулей, которые являются относительно самостоятельными устройствами ПК (напрмер, процессор, оперативная память, контроллер, дисплей, принтер, сканер и т.д.).

Модульный принцип позволяет пользователю самостоятельно комплектовать необходимую конфигурацию ПК и производить при необходимости его обновление. Модульная организация системы опирается на магистральный принцип обмена информацией. Для работы ПК как единого механизма необходимо осуществлять обмен данными между различными устройствами, за что отвечает системная (магистральная) шина, которая выполняется в виде печатного мостика на материнской плате.

Основные особенности архитектуры ПК сводятся к принципам компоновки аппаратуры, а также к выбранному набору системных аппаратных средств.

Подобная архитектура характеризуется ее открытостью – возможностью включения в ПК дополнительных устройств (системных и периферийных), а также возможностью простого встраивания программ пользователя на любом уровне программного обеспечения ПК.

Также совершенствование архитектуры ПК связано с максимальным ускорением обмена информацией с системной памятью. Именно из системной памяти, в которой хранятся данные, ПК считывает все исполняемые команды. Таким образом больше всего обращений центральный процессор совершает к памяти и ускорение обмена с памятью приведет к существенному ускорению работы всей системы в целом.

Т.к. при использовании системной магистрали для обмена процессора с памятью приходится учитывать скоростные ограничения самой магистрали, то существенного ускорения обмена данными с помощью магистрали добиться невозможно.

Для решения этого вопроса был предложен следующий подход. Системная память вместо системной магистрали подключается к специальной высокоскоростной шине, которая дистанционно находится ближе к процессору и не требует сложных буферов и больших расстояний. В этом случае обмен с памятью идет с максимально возможной для процессора скоростью, и системная магистраль не замедляет его. Особенно актуальным это решение стало с ростом быстродействия процессора.

Таким образом, структура ПК из одношинной, которая применялась только в первых компьютерах, становится трехшинной.

Рисунок 2. Трехшинная структура ПК

АЛУ и УУ в современных ПК образуют процессор. Процессор, который состоит из одной или нескольких больших интегральных схем, называется микропроцессором или микропроцессорным комплектом.

Многопроцессорная архитектура ПК

Наличие в ПК нескольких процессоров означает, что параллельно может быть организовано много потоков данных и команд, т.е. одновременно могут выполняться несколько фрагментов одной задачи.

Рисунок 3. Архитектура многопроцессорного ПК

Многомашинная вычислительная система

В архитектуре многомашинной вычислительной системы каждый процессор имеет свою оперативную память. Применение многомашинной вычислительной системы эффективно при решении задач, которые имеют очень специальную структуру, которая должна состоять из такого количества ПК, на сколько слабо связанных подзадач разбита система.

Многопроцессорные и многомашинные вычислительные системы имеют преимущество перед однопроцессорными в быстродействии.

Архитектура с параллельными процессорами

В данной архитектуре несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе, т. е. по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных.

Рисунок 4. Архитектура с параллельным процессором

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и другие архитектурные решения, отличные от рассмотренных выше.

Основные узлы компьютера

Основные узлы

Комплекс нескольких логических схем и элементов памяти, создающих выходные сигналы, является узлом ПК. Абсолютно все компьютерные программы или игры имеют требования к основным характеристикам для корректной работы. Все узлы компьютера должны быть максимально совместимы друг с другом. В противном случае работать в программах будет некомфортно.

К перечню подобных узлов системного блока обычно относят:

  1. Процессор – основополагающий элемент всего функционала компьютера;
  2. Системная плата, ее еще называют «материнской»;
  3. Блок питания – необходим для энергоснабжения ПК;
  4. Жесткий диск – хранилище информации на ПК или ноутбуке;
  5. Оптический привод – устройство для чтения с внешних носителей, который редко встречается на новейших системах;
  6. Разъемы для подключаемых устройств.

Управление точностью построения объектов

Управление точностью построения объектов На вкладке построений Drafting диалогового окна Options, показанной на рис. 3.10, можно сделать следующие назначения. Рис. 3.10. Диалоговое окно управления точностью построения объектов• В области AutoSnap Settings назначаются следующие

1.2.1. Принципы построения модели IDEF0 На начальных этапах создания информационной системы необходимо понять, как работает организация, которую собираются автоматизировать. Для описания работы предприятия необходимо построить модель. Такая модель должна быть адекватна

САМОЕ ГЛАВНОЕ

В каждой области науки и техники существуют фундаментальные идеи или принципы, определяющие на многие годы вперёд её содержание и направление развития. В компьютерных науках роль таких фундаментальных идей сыграли принципы, сформулированные независимо друг от друга двумя крупнейшими учёными XX века — Джоном фон Нейманом и Сергеем Алексеевичем Лебедевым.

К основополагающим принципам построения компьютеров (принципам Неймана-Лебедева) можно отнести следующие:

1) состав основных компонентов вычислительной машины;
2) принцип двоичного кодирования;
3) принцип однородности памяти;
4) принцип адресности памяти;
5) принцип иерархической организации памяти;
6) принцип программного управления.

Архитектура — это наиболее общие принципы построения компьютера, отражающие программное управление работой и взаимодействием его основных функциональных узлов.

Классическая архитектура компьютеров первых поколений предполагала осуществление взаимодействия всех устройств через процессор и наличие неизменного набора внешних устройств.

Современные персональные компьютеры обладают открытой магистрально-модульной архитектурой — устройства взаимодействуют через шину, что способствует оптимизации процессов обмена информацией внутри компьютера. Второе преимущество современной архитектуры — возможность легко изменить конфигурацию компьютера путём подключения к шине новых или замены старых внешних устройств.

Принципы открытой архитектуры: как персональные компьютеры стали массовым явлением

Расцветом эпохи компьютеростроения считается переход от производства больших электронно-вычислительных машин к развитию сегмента микрокомпьютеров, или, как принято их сейчас называть, ПК. Ассортиментом современных «персоналок» пользователи во многом обязаны компании IBM и принципам открытой архитектуры, которыми руководствовались ее разработчики при создании культового IBM PC. Домашние компьютеры, какими их привыкли видеть теперь, унаследовали эту концепцию и обрели мировую популярность, перестав быть достоянием энтузиастов в сфере электроники и программирования. Так в чем заключается принцип открытой архитектуры?

Предпосылки: архитектурная открытость ЭВМ

Период 60-70-х годов в мире вычислительной техники ознаменовался возникновением электронно-вычислительных машин третьей волны. Тогда индустрия впервые перешла от создания единичных моделей ЭВМ к наладке серийного производства. Безусловным лидером на рынке считалась корпорация International Business Machines. Представленная ею в 1964 году серия мейнфреймов System/360 стала поистине революционным решением. В нее вошли 6 универсальных компьютеров, отличающихся по стоимости и мощности. Главное отличие от ряда конкурирующих экземпляров – взаимная совместимость. Программы или устройства ввода-вывода одного компьютера запускались и на других продуктах серии.

Логотип System/360

Раньше подход к созданию продукции отличался: каждая модель разрабатывалась с нуля – со своим процессором, написанными под него программами и конкретным пакетом периферийных устройств. Это затрудняло обмен данными между машинами разных моделей и влекло затраты, связанные с несовместимостью. Концепция, предложенная IBM, призывала утвердить некий стандарт и сократить расходы на обслуживание малосовместимых ЭВМ. Позднее такая унификация привела к созданию комплементарных модулей, выпускаемых другими фирмами.

До этого пользователи ограничивались стандартными конфигурациями вычислительной техники. Впоследствии же ее модифицировали согласно личным нуждам для решения большего количества задач, нежели заложено заводскими предустановками. Модульность и техническая совместимость стали основой принципа открытой архитектуры компьютера.

Первый микрокомпьютер на открытой архитектуре

У любителей-радиоэлектронщиков ЭВМ вызывали досаду: стоили дорого, использовались только организациями, а люди, обслуживавшие такие машины, считались избранными. Это привело к тому, что в среде энтузиастов предпринимались попытки «спаять» собственный компьютер. Но владения практическими навыками в сборке было недостаточно. Требовались по меньшей мере базовые знания программных языков, чтобы «завести» собранную машину.

Altair 8800

Ключевым поворотом в истории, давшим импульс эпохе персональных ЭВМ, стала разработка микрокомпьютера Altair-8800 компанией MITS в 1974 году. Модель представляла собой набор печатных плат, заключенный в пластиковую коробку с переключателями и лампочками. Не было ни монитора, ни клавиатуры, столь привычных в нынешнем понимании. Но для общественности эта модель представляла немалый интерес, поскольку продавалась как в собранном виде, так и в комплектах деталей. Такой конструктор сопровождался инструкцией и техпаспортом. Политика производителя по разглашению этой информации и предоставлению возможности самостоятельной сборки воплощала принцип открытой архитектуры компьютера. Что было дальше?

IBM PC как стандарт принципов открытой архитектуры

Спустя шесть лет после дебюта «Альтаира» мир увидел IBM PC, ставший заключительным этапом в формировании понятия «персональный компьютер». Видя, как рынок микрокомпьютеров стремительно заполняют конкуренты вроде Apple и Commodore, руководство IBM решило не упускать шанс и спроектировать собственную персоналку.

Прежде компания производила необходимые комплектующие, не прибегая к помощи третьих лиц. Однако на этот раз времени на разработку не хватало – IBM рисковала опоздать и не запрыгнуть в уходящий поезд. Поэтому корпорация назначила команду, отвечавшую за поиск новых высокопроизводительных деталей, которые только предлагал рынок микроэлектроники того времени. Так, за процессором обратились к Intel, операционную систему предложила еще только развивающаяся фирма Microsoft, принтер взят у Epson, а монитор – у IBM Japan. Корпоративными усилиями создана только клавиатура и конечная комплектация.

Эпохальный IBM PC 5150

В модель изначально закладывалась идея апгрейда. Конкурентную продукцию в большинстве представляли статичные машины, подверженные неизменному устареванию. Тогда как этот PC предусматривал наращивание производительности. Кроме того, наработки оказались доступными для желающих, что дало сторонним фирмам право на изготовление системных и периферийных устройств без необходимости покупки лицензии.

Стандартизация комплектующих, открытое лицензирование и свободное замещение деталей раскрыли суть принципа открытой архитектуры, породив настоящий бум персональных компьютеров. С тех пор аббревиатура ПК ассоциировалась с IBM-PC-совместимыми микрокомпьютерами. В похожем контексте этот термин употребляется по сей день.

Наше время

Ассортимент персональных компьютеров представлен преимущественно ПК с открытой архитектурой. Их владельцы вправе собственноручно модифицировать программную и аппаратную часть. К числу популярных марок относят:

  • Acer;
  • ASUS;
  • Dell;
  • Hewlett-Packard;
  • Lenovo.

Противостояние Mac и ПК

Компьютеры Apple, напротив, представляют закрытый тип архитектуры. Компания сама создает компоненты и ПО, так что улучшить Mac рядовому юзеру не представляется возможным. Наряду с завышенной стоимостью это считается недостатком, который, впрочем, компенсируется гарантией качества продукции. Архитектурная открытость хоть и предполагает наличие некоторых уязвимостей, но не представляет угрозы при грамотной эксплуатации. Взамен же владелец получает простор для модификаций и волен персонализировать ПК, опираясь на личные цели и предпочтения.

Материнская плата

Один из ключевых компонентов современного компьютера — материнская, или системная, плата. На ней располагаются контроллеры, шины, мосты и иные элементы, позволяющие объединять между собой различные аппаратные компоненты. Благодаря ей фактически реализуется современная архитектура ПК. Системная плата позволяет эффективно распределить функции компьютера по различным устройствам. Данный компонент размещает на себе большинство остальных, а именно процессор, видеокарту, оперативную память, жесткие диски и т. д. BIOS, важнейший программный компонент ПК, в большинстве случаев прописывается в одной из микросхем материнской платы. Важно, чтобы соответствующие элементы не были повреждены.

Заменяя материнскую плату или выбирая нужную модель в процессе сборки ПК, необходимо удостовериться, что новая ее модель будет совместима с иными аппаратными компонентами. Так, есть платы, поддерживающие процессоры Intel, а есть те, на которые можно устанавливать только микросхемы от AMD. Очень важно убедиться в том, что новая плата поддерживает существующие модули памяти. Что касается видеокарты и жестких дисков, обычно никаких проблем не возникает в силу достаточного высокого уровня стандартизации на соответствующих рынках. Но нежелательно, чтобы новая материнская плата и указанные компоненты слишком сильно различались по уровню технологичности. Иначе менее производительный элемент будет тормозить всю систему.

Основные узлы компьютера

Основные узлы

Комплекс нескольких логических схем и элементов памяти, создающих выходные сигналы, является узлом ПК. Абсолютно все компьютерные программы или игры имеют требования к основным характеристикам для корректной работы. Все узлы компьютера должны быть максимально совместимы друг с другом. В противном случае работать в программах будет некомфортно.

К перечню подобных узлов системного блока обычно относят:

  1. Процессор – основополагающий элемент всего функционала компьютера;
  2. Системная плата, ее еще называют «материнской»;
  3. Блок питания – необходим для энергоснабжения ПК;
  4. Жесткий диск – хранилище информации на ПК или ноутбуке;
  5. Оптический привод – устройство для чтения с внешних носителей, который редко встречается на новейших системах;
  6. Разъемы для подключаемых устройств.

Оперативная память

Данный компонент также непосредственным образом влияет на производительность ПК. Основные функции ОЗУ в целом те же, что были характерны для компьютеров первых поколений. В этом смысле оперативная память – классический аппаратный компонент. Однако тем самым подчеркивается ее важность: до сих пор производители ПК не придумали ей достойной альтернативы.

Основной критерий производительности памяти — это ее объем. Чем он больше, тем быстрее работает компьютер. Также модули ПК обладают тактовой частотой, как и процессор. Чем она выше, тем более производителен компьютер. Замену ОЗУ следует осуществлять, убедившись, что новые модули совместимы с материнской платой.

Компьютеры Apple

Какие еще есть типы архитектур ПК? В числе тех, которые составляют прямую конкуренцию архитектуре IBM, совсем немного. Например, это компьютеры Macintosh от Apple. Конечно, по многим критериям они схожи с архитектурой IBM — в них также есть процессор, память, видеокарта, материнская плата и жесткие диски.

Принципы архитектуры ПК

Однако компьютеры от Apple характеризуются тем, что их платформа закрыта. Пользователь весьма ограничен в установке на ПК компонентов по своему усмотрению. Apple — это единственный бренд, который может легально выпускать компьютеры в соответствующей архитектуре. Аналогично Apple — единственный поставщик функциональных операционных систем, выпускаемых в рамках собственной платформы. Таким образом, те или иные виды архитектуры ПК могут различаться не столько аппаратными составляющими компьютера, сколько подходами брендов-производителей к выпуску соответствующих решений. В зависимости от собственной стратегии развития компания может делать акцент на открытости или же закрытости платформы.

Итак, основные особенности архитектуры современных ПК на примере IBM-платформы: отсутствие монопольного бренда-производителя компьютеров, открытость. Причем как в программном, так и в аппаратном аспекте. Что касается главного конкурента IBM-платформы, компании Apple, основные признаки ПК соответствующей архитектуры — это закрытость, а также выпуск компьютеров единственным брендом.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector