Как превратить персональный компьютер в измерительный комплекс
Любой IBM-совместимый персональный компьютер (ПК), даже несколько лет провалявшийся в глубине шкафа за ненадобностью, может превратиться в мощный измерительный комплекс, если его снабдить одним или несколькими аналоговыми входами. Его клавиатура и экран предоставляют существенно большие возможности по сравнению с теми, которые могут дать мультиметр или осциллограф, а дисковод и принтер прекрасно подходят для регистрации любых длительных процессов. Кроме того, вычислительная мощь ПК позволяет подвергать собранные с его помощью информационные данные любой, даже очень сложной обработке. Еще несколько лет назад для превращения ПК в виртуальный измерительный прибор требовалось установить в компьютер одну или несколько сложных и дорогостоящих плат.
Подобный подход до сих пор используется в промышленности и научных лабораториях, но сегодня также можно добиться достойных результатов, просто подключив небольшие аналого-цифровые преобразователи к стандартным последовательным или параллельным портам. На рынке есть готовые изделия, предлагаемые по приемлемой цене, но подобные устройства можно собрать и самостоятельно, руководствуясь схемами и рекомендациями, приведенными в данной книге.
Благодаря библиотеке драйверов, которые предназначены для описываемых устройств, эта книга и файлы, находящиеся на сервере www.dmk.ru, позволят читателю быстро перейти к практической работе, каков бы ни был его уровень знаний в области электроники.
Для всех задач, рассматриваемых здесь, приводятся программы, готовые к применению, причем можно адаптировать их так, чтобы они отвечали иным потребностям, всего лишь изменив несколько строк на языке BASIC. Таким образом, что очень важно, виртуальный измерительный комплекс является перепрограммируемым.
Сегодня принято называть «виртуальными» все хотя бы в некоторой степени нестандартные приложения для персональных компьютеров. Много полезных вещей можно просто моделировать на хорошем цветном экране с высоким разрешением, и результат зачастую будет выглядеть «лучше, чем есть на самом деле».
Итак, на экране виртуального измерительного прибора наверняка будет представлена сложная, насыщенная картинка, на которой есть и кнопки, и различные индикаторы, и шкалы, и даже осциллографические экраны. Возможности графических интерфейсов типа Windows обеспечивают гораздо более широкую область применения, чем может иметь обычный измерительный прибор, — не говоря уже о потенциальном использовании принтеров, дисковых накопителей, а также модема, подключенного к Internet.
Собственно виртуальный прибор представляет собой более или менее сложное программное обеспечение, установленное на персональный компьютер, и некое интерфейсное устройство, позволяющее ПК получить доступ к тем физическим величинам и процессам, которые он должен будет обрабатывать. Как правило, в качестве такого интерфейса выступает аналого-цифровой преобразователь с одним или несколькими входами, возможно, снабженный устройством нормирования входного сигнала.
В принципе, можно рассчитывать на то, что виртуальный прибор предоставит своему владельцу гораздо более широкие возможности, причем по цене будет сравним с классическим измерительным прибором, имеющим тот же уровень технических характеристик.
Такой подход позволяет ограничиться минимальными затратами, если требования к измерительному комплексу не очень жесткие. Подобное решение идеально соответствует нуждам радиолюбителей, преподавателей и даже некоторых научно-исследовательских лабораторий, которые имеют дело с относительно медленными физическими процессами. Кроме того, это дает возможность вернуть к активной и полезной работе самые старые из IBM-совместимых ПК, которые, казалось бы, обречены на то, чтобы тихо пылиться в глубинах шкафов и кладовок благодаря умопомрачительной эволюции вычислительной техники (и политике компаний-производителей ПК и программного обеспечения).
1. КОНЦЕПЦИЯ ПОСТРОЕНИЯ ВИРТУАЛЬНОГО ИЗМЕРИТЕЛЬНОГО КОМПЛЕКСА
Ниже приведена концепция построения виртуального измерительного комплекса на базе персонального компьютера и рассмотрены задачи, решаемые при помощи составных частей этого комплекса.
РОЛЬ КОМПЬЮТЕРА
Компьютер (чаще всего IBM-совместимый, настольный или портативный) как центральный орган любой виртуальной измерительной системы выполняет прежде всего функции интерфейса «человек — объект измерения». Экран любого монитора дает гораздо больше возможностей для индикации, чем экран осциллографа (будь тот даже запоминающим), и, разумеется, экран монитора гораздо больше, чем дисплей мультиметра. Клавиатура и особенно мышь гораздо удобнее в работе, чем кнопки, а принтер — даже простейший — предоставляет неоценимые возможности для вывода результатов на бумагу. Кроме того, любой ПК, пусть даже очень «древний», обладает большой вычислительной мощностью, которую можно использовать для того, чтобы применить различные виды обработки результатов измерений: нормирование (приведение шкалы), линеаризацию, временную привязку, вычисление среднего, статистику и т. д. Наконец, дисковый накопитель будет очень удобен для накопления больших объемов данных с целью их последующей обработки, архивирования или передачи по линиям связи с помощью модема.
РОЛЬ ИНТЕРФЕЙСНЫХ УСТРОЙСТВ
Измерение физических параметров, таких как напряжение, ток, температура или давление, предполагает точную оценку аналоговых величин. Компьютер же работает исключительно с дискретными величинами. Отсюда ясно, что процесс превращения ПК в виртуальный измерительный прибор предполагает подключение аналого-цифрового преобразователя (АЦП). АЦП может общаться с компьютером либо через последовательный или параллельный порты, либо непосредственно через шины, если аналого-цифровой преобразователь выполнен в виде платы расширения или карты PCMCIA.
Первый вариант гарантирует максимальную простоту и дешевизну, а при использовании второго можно получить отличные характеристики, но только за счет сложности и высокой цены. Интерфейсное устройство также может выполнять и другие необходимые функции, например, гальваническую развязку источников сигналов от цепей ПК, согласование сигналов, формируемых некоторыми типами датчиков, по импедансу, напряжению, полярности и т. д., а также коммутацию нескольких входных каналов.
РОЛЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
Область применения виртуального прибора практически полностью определяется характеристиками программного обеспечения, в то время как характеристики интерфейсных устройств в большинстве случаев вполне понятны пользователю.
Промышленные изделия подобного рода почти всегда используются при работе с более или менее развитым графическим интерфейсом (кстати, не всегда под Windows), позволяющим выбрать тот или иной режим с помощью клавиатуры или мыши через различные меню (рис. 1.1).
Рис 1.1. Пример экранных меню виртуального измерительного прибора
Как будет показано в дальнейшем, очень удобно создавать маленькие программы, специально предназначенные для выполнения той или иной практической задачи. Часто они пишутся на таком популярном и простом языке, как BASIC. Небольшое структурирование этих программ позволит применять и промышленные интерфейсные устройства, и устройства, самостоятельно собранные из отдельных элементов, путем простой переустановки соответствующего драйвера. Ниже будет проведено сравнение обоих вариантов, благодаря чему читатели смогут выбрать решение, наиболее соответствующее их личным потребностям, техническим и финансовым возможностям, и, наконец, талантам в области программирования.
Аннотация к презентации
Презентация powerpoint на тему «Виртуальные измерительные приборы». Содержит 6 слайдов. Скачать файл 0.41 Мб. Самая большая база качественных презентаций. Смотрите онлайн с анимацией или скачивайте на компьютер.
Виртуальные измерительные приборы
Группа 2ИС-01 Лазарева Александра
Слайд 2
Любой персональный компьютер (ПК) может превратиться в мощный измерительный комплекс, если его снабдить одним или несколькими аналоговыми входами. Его клавиатура и экран предоставляют существенно большие возможности по сравнению с теми, которые могут дать мультиметр или осциллограф, а дисковые устройства хранения данных и принтер прекрасно подходят для регистрации любых длительных процессов
Слайд 3
Еще несколько лет назад для превращения ПК в виртуальный измерительный прибор требовалось установить в компьютер одну или несколько сложных и дорогостоящих плат. Подобный подход до сих пор используется в промышленности и крупных научных лабораториях, но сегодня также можно добиться достойных результатов, просто подключив небольшие аналого-цифровые преобразователи к стандартным последовательным или параллельным портам. На рынке есть готовые изделия, но подобные устройства можно собрать и самостоятельно.
Слайд 4
Собственно виртуальный прибор представляет собой более или менее сложное программное обеспечение, установленное на персональный компьютер, и некое интерфейсное устройство, позволяющее ПК получить доступ к тем физическим величинам и процессам, которые он должен будет обрабатывать. Как правило, в качестве такого интерфейса выступает аналого-цифровой преобразователь с одним или несколькими входами, возможно, снабженный устройством нормирования входного сигнала.
Слайд 5
В принципе, можно рассчитывать на то, что виртуальный прибор предоставит своему владельцу гораздо более широкие возможности, причем по цене будет сравним с классическим измерительным прибором, имеющим тот же уровень технических характеристик.
Слайд 6
Таким образом, основная структура виртуального измерительного прибора :такова: 1.датчик.2.входной усилитель.3.аналого-цифровой преобразователь.4.управляющая программа на компьютере.
Виртуальные приборы
Использование компьютерных технологий в контрольно-измерительной аппаратуре позволило создавать «виртуальные» измерительные приборы, представляющие собой синтез одной или двух плат сбора данных, персонального компьютера и программного обеспечения.
Открытая архитектура компьютера дает возможность устанавливать платы первичного сбора данных непосредственно в слоты расширения компьютера. Это позволяет компактно разместить на плате расширения процессорной шины ПК такие устройства первичного сбора данных, как АЦП, ЦАП, платы цифрового и таймерного ввода-вывода. Платы расширения выполняются и в виде самостоятельного блока, подключаемого к параллельному LPT—порту компьютера.
Многофункциональные и специализированные платы расширения (Plug in card), добавленные к компьютеру и оснащенные необходимым программным обеспечением (LabView, LabWindows PcLab 2000 b др.), дают возможность экспериментатору создавать свои виртуальные приборы. Эти приборы обладают всеми вычислительными возможностями компьютера, могут выполнять любые задачи по сбору и обработке данных, их представлению и хранению, выполняют масштабирование, статистический анализ, временной и спектральный анализ. Представление данных и результатов анализа также реализуется при помощи компьютера с использованием компьютерной графики, позволяющей создавать с помощью программных средств передние панели прибора. Это новый класс быстродействующих готовых к работе программируемых приборов.
На базе компьютера может быть реализован целый комплекс виртуальных приборов: цифровых осциллографов, мультиметров, генераторов сигналов произвольной формы, анализаторов спектров, логических анализаторов состояний для тестирования цифровых интегральных схем и др. Использование встроенной внутри компьютера звуковой карты позволит виртуальным приборам работать в частотном диапазоне до 20 кГц и динамическом — до 1В.
Достоинства измерительных приборов на основе компьютера:
● неограниченное фиксирование данных;
неограниченные возможности отображения;
● встроенные мультимедийные инструкции оператора по процедуре измерения (текст, изображение и др.);
● настраиваемый пользовательский интерфейс;
● доступ в Интернет для обмена данными;
● связь с корпоративными базами данных и информационными
● автоматическое создание отчетов;
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.
Приборы на основе ПК занимают меньше места, дешевле, но по функциональным возможностям эквивалентны традиционным измерительным приборам.
Разработанная (эмулированная пользователем) программная панель, похожая на панель измерительного прибора, системные программы (драйверы) расширяют и облегчают практическое взаимодействие с прибором. При этом пользователь может компоновать множество передних панелей конкретного прибора, каждая из которых соответствует его определенной функции и может динамически заменяться другой с помощью простой программной инструкции или оператора. Можно использовать даже несколько виртуальных приборов, одновременно отображая их передние панели в нескольких окнах.
Концепцию виртуальных приборов предложила американская фирма National Instruments, которая на сегодняшний день предлагает ряд интересных разработок. Виртуальные приборы весьма перспективны и имеют большое будущее.
Приборы на базе ПК и аксессуары к ним45
Приборы на базе ПК — это приборы, с помощью которых можно создатьнедорогую виртуальную лабораторию. Используя виртуальные приборы можно превратить свой компьютер в универсальный измерительный прибор. Достаточно подключить к компьютеру внешний модуль или через свободный слот подключить небольшую плату, установить ПО и у вас в распоряжении полноценный измерительный прибор с большим экраном, пользовательским интерфейсом, широкими возможностями измерений, а так же с возможностью хранения и обработки полученной информации.
Виртуальные приборы в виде прикладных программ обладают всеми необходимыми интеллектуальными свойствами, позволяют реализовать все функции традиционных приборов. Так же Приборы на базе ПК позволяют значительно экономить не только денежные средства необходимые на покупку, но и место на рабочем столе. Так же Приборы на базе ПК позволяют пользователю быть мобильным. Можно брать прибор с собой вместе с портативным ПК.
В ассортименте компании «Чип и Дип» представлено огромное количество приборов на базе ПК.Обратившись к нам, вы всегда сможете купить виртуальный прибор ведущих брендов, таких как:ZETLAB, АКИП, KEYSIGHT,HANTEK.
Посмотреть и купить товар из группы «Приборы на базе ПК и аксессуары к ним» вы можете в нашем магазине в Минске. Доставка заказа почтой по всей территории Республики Беларусь, включая города Гомель, Могилёв, Витебск, Гродно, Брест, Бобруйск, Барановичи.
Компьютерные измерительные системы.
В настоящее время сформировались новое направление в метрологии и радиоизмерительной технике – компьютерно-измерительные системы (КИС) – и их разновидности, или направление развития, – виртуальные измерительные приборы. КИС обязательно включает в себя компьютер, работающий в режиме реального масштаба времени – on-line.
Персональные компьютеры используются не только как вычислительные средства, но и как универсальные измерительные приборы. КИС на основе персонального компьютера заменяют стандартные измерительные приборы (вольтметры, осциллографы, анализаторы спектра, генераторы и пр.) системой виртуальных приборов. Причем ряд этих приборов может быть активизирован (воспроизведен) на одном персональном компьютере одновременно.
К отличительным особенностям и основным преимуществам КИС по сравнению с микропроцессорными приборами относятся:
• обширный фонд стандартных прикладных компьютерных программ, доступных для оператора, позволяющий решать широкий круг прикладных задач измерений (исследование и обработка сигналов, сбор данных с датчиков, управление различными промышленными установками и т.д.);
• возможность оперативной передачи данных исследований и измерений по локальным и глобальным компьютерным сетям (например, сети Интернет);
• высокоразвитый графический интерфейс пользователя, обеспечивающий быстрое освоение взаимодействия с системой;
• возможность использования внутренней и внешней памяти большой емкости;
• возможность составления компьютерных программ для решения конкретных измерительных задач;
• возможность оперативного использования различных устройств документирования результатов измерений.
Структурная схема КИС.В самом общем случае КИС может быть построена двумя способами: с последовательной и параллельной архитектурой.
В КИС с последовательной архитектурой (ее иногда называют централизованной системой) части системы, преобразующие анализируемые сигналы, обрабатывают их в последовательном режиме. Поэтому вся соответствующая электроника размещается на слотах компьютера. Достоинства такой архитектуры построения КИС очевидны: благодаря использованию принципа разделения обработки по времени стоимость системы невелика.
В КИС с параллельной архитектурой содержится ряд параллельных каналов измерения, каждый из которых имеет собственные узлы преобразования анализируемых сигналов, и только процессор компьютера работает в режиме мультиплексирования (т.е. объединения сигналов). Подобный принцип построения КИС позволяет проводить оптимизацию обработки сигналов в каждом канале независимо. В такой системе преобразование сигналов можно выполнять локально в месте расположения источника исследуемого сигнала, что позволяет передавать сигналы от измеряемого объекта в цифровой форме.
На рисунке 25.1 показана обобщенная структурная схема компьютерно-измерительной системы, отражающая как последовательную, так и параллельную архитектуру построения.
Взаимодействие между отдельными элементами КИС осуществляется с помощью внутренней шины персонального компьютера, к которой подключены как его внешние устройства, так и измерительная схема, состоящая из коммутатора АЦП и блока образцовых программно-управляемых мер напряжения и частоты.
Рисунок 25.1 – Обобщенная структурная схема компьютерно-измерительной системы
С помощью ЦАП можно вырабатывать управляющие аналоговые сигналы, интерфейсный модуль (ИМ) подключает измерительный прибор к магистрали приборного интерфейса. Контроллер устройства обеспечивает подачу аналоговых сигналов с внешних датчиков на узлы системы.
Достаточно простые узлы КИС можно разместить на одной плате персонального компьютера. Существуют и более сложные структуры КИС, в которых в соответствии с решаемой измерительной задачей по установленной программе коммутируются необходимые измерительные элементы.