Кодирование информации
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.06.2014 |
Размер файла | 14,9 K |
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
код компьютерные данные числовая информация
Кодирование информации
Код — это набор условных обозначений (или сигналов) для записи (или передачи) некоторых заранее определенных понятий.
Кодирование информации — это процесс формирования определенного представления информации. В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.
Обычно каждый образ при кодировании (иногда говорят — шифровке) представлении отдельным знаком.
Знак — это элемент конечного множества отличных друг от друга элементов.
В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.
Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью программ для компьютера можно выполнить преобразования полученной информации, например «наложить» друг на друга звуки от разных источников.
Аналогичным образом на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.
Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми. Ввод чисел в компьютер и вывод их для чтения человеком может осуществляться в привычной десятичной форме, а все необходимые преобразования выполняют программы, работающие на компьютере.
Способы кодирования информации
Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества — письменность и арифметика — есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.
Двоичное кодирование — один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.
Кодирование символьной (текстовой) информации
Основная операция, производимая над отдельными символами текста — сравнение символов.
При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.
Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при кодировании и декодировании одного и того же текста использовалась одна и та же таблица.
Таблица перекодировки — таблица, содержащая упорядоченный некоторым образом перечень кодируемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и обратно.
Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII,CP1251, Unicode.
Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.
Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.
Кодирование числовой информации
Сходство в кодировании числовой и текстовой информации состоит в следующем: чтобы можно было сравнивать данные этого типа, у разных чисел (как и у разных символов) должен быть различный код. Основное отличие числовых данных от символьных заключается в том, что над числами кроме операции сравнения производятся разнообразные математические операции: сложение, умножение, извлечение корня, вычисление логарифма и пр. Правила выполнения этих операций в математике подробно разработаны для чисел, представленных в позиционной системе счисления.
Основной системой счисления для представления чисел в компьютере является двоичная позиционная система счисления.
Кодирование текстовой информации
В настоящее время, большая часть пользователей, при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Подсчитаем, сколько всего символов и какое количество бит нам нужно.
10 цифр, 12 знаков препинания, 15знаков арифметических действий, буквы русского и латинского алфавита, ВСЕГО:155 символов, что соответствует 8 бит информации.
Единицы измерения информации.
1 Кбайт = 1024 байтам
1 Мбайт = 1024 Кбайтам
1 Гбайт = 1024 Мбайтам
1 Тбайт = 1024 Гбайтам
Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до11111111 или соответствующий ему десятичный код от 0 до 255.
Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ — 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой
Основным отображением кодирования символов является код ASCII — AmericanStandardCodeforInformationInterchange — американский стандартный код обмена информацией, который представляет из себя таблицу 16 на 16, где символы закодированы в шестнадцатеричной системе счисления.
Кодирование графической информации
Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).
Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения
Векторное изображение представляет собой графический объект, состоящий из элементарных геометрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется координатами точек и величиной радиуса. Для каждой линии указывается двоичныекоды типа линии (сплошная, пунктирная, штрихпунктирная),толщины и цвета.
Растровое изображение представляет собой совокупность точек (пикселей), полученных в результате дискретизации изображения в соответствии с матричным принципом.
Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.
Pixel (picture element — элемент рисунка) — минимальная единица изображения, цвет и яркость которой можно задать независимо от остального изображения.
В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображаемые на экране дисплея, получаемые с помощью сканера. Качество изображения будет тем выше, чем «плотнее» расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.
Для черно-белого изображения код цвета каждого пикселя задается одним битом.
Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.
Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возможность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета — так называемый режим “истинного цвета” (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров.
Кодирование звуковой информации
Из курса физики вам известно, что звук — это колебания воздуха. По своей природе звук является непрерывным сигналом. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение.
Для компьютерной обработки аналоговый сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел, а для этого его необходимо дискретизировать и оцифровать.
Можно поступить следующим образом: измерять амплитуду сигнала через равные промежутки времени и записывать полученные числовые значения в память компьютера.
Размещено на Allbest.ru
САМОЕ ГЛАВНОЕ
Для компьютерного представления целых чисел используются несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64) и наличием или отсутствием знакового разряда.
Для представления беззнакового целого числа его следует перевести в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.
При представлении со знаком самый старший разряд отводится под знак числа, остальные разряды — под само число. Бели число положительное, то в знаковый разряд помещается 0, если число отрицательное, то 1. Положительные числа хранятся в компьютере в прямом коде, отрицательные — в дополнительном.
При хранении в компьютере вещественных чисел выделяются разряды на хранение знака порядка числа, самого порядка, знака мантиссы и мантиссы. При этом любое число записывается так:
где:
m — мантисса числа;
q — основание системы счисления;
p — порядок числа.
Заключение
Информацию можно классифицировать разными способами, и разные науки это делают по-разному. Например, в философии различают информацию объективную и субъективную. Объективная информация отражает явления природы и человеческого общества. Субъективная информация создается людьми и отражает их взгляд на объективные явления.
В информатике отдельно рассматривается аналоговая информация и цифровая. Это важно, поскольку человек благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а вычислительная техника, наоборот, в основном, работает с цифровой информацией.
Человек воспринимает информацию с помощью органов чувств. Свет, звук, тепло — это энергетические сигналы, а вкус и запах — это результат воздействия химических соединений, в основе которого тоже энергетическая природа. Человек испытывает энергетические воздействия непрерывно и может никогда не встретиться с одной и той же их комбинацией дважды. Нет двух одинаковых зеленых листьев на одном дереве и двух абсолютно одинаковых звуков — это информация аналоговая. Если же разным цветам дать номера, а разным звукам — ноты, то аналоговую информацию можно превратить в цифровую.
Кодирование информации. Кодирование информации — это процесс формирования определенного представления информации.
В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.
Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью компьютерных программ можно преобразовывать полученную информацию, например «наложить» друг на друга звуки от разных источников.
Аналогично на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.
Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.
Укажите правильную морфологическую характеристику слова ПРЕОБРАЗОВАНА из второго (2) предложения текста.
1) действительное причастие
2) страдательное причастие
3) краткое прилагательное
4) деепричастие совершенного вида
Слово преобразована образовано от глагола преобразовать и отвечает на вопрос какова? Таким образом, это отглагольное образование с общим атрибутивным (признак) значением. В русском языке значение признака по действию имеет только причастие. Действительный или страдательный залог причастий легко определяется по формальным показателям (по суффиксам): действительные причастия имеют в своем составе суффиксы –ущ-/-ющ-, -ащ-/-ящ-, -вш-, -в-, страдательные: -ем-, -им-, — н-/-нн-.
Таким образом, преобразована – страдательное причастие, Верный ответ — №2.
Решение задания A11 по русскому языку
Как работает компьютер
Еще при создании первых компьютеров в 1945 г. знаменитый математик Джон фон Нейман описал, как должен быть устроен компьютер, чтобы он был универсальным и эффективным устройством для обработки информации. Эти основы конструкции компьютера называются принципами фон Неймана. Сейчас подавляющее большинство компьютеров в основных чертах соответствует принципам фон Неймана.
Устройства компьютера. Прежде всего, компьютер, согласно принципам фон Неймана, должен иметь следующие устройства:
· арифмепгическо-логическое устройство, выполняющее арифметические и логические операции;
· устройство управления, которое организует процесс выполнения программ;
· запоминающее устройство, или память для хранения про
· внешние устройства для ввода-вывода информации.
Память компьютера должна состоять из некоторого количества пронумерованных ячеек, в каждой из которых могут находиться или обрабатываемые данные, или инструкции программ. Все ячейки памяти должны быть одинаково легко доступны для других устройств компьютера.
Вот каковы должны быть связи между устройствами компьютера (одинарные линии показывают управляющие связи, двойные — информационные).
Принципы работы компьютера. В общих чертах работу компьютера можно описать так. Вначале с помощью какого-либо внешнего устройства в память компьютера вводится программа. Устройство управления считывает содержимое ячейки памяти, где находится первая инструкция (команда) программы, и организует ее выполнение. Эта команда может задавать выполнение арифметических или логических операций, чтение из памяти данных для выполнения арифметических или логических операций или запись их результатов в память, ввод данных из внешнего устройства в память или вывод данных из памяти на внешнее устройство.
Как правило, после выполнения одной команды устройство управления начинает выполнять команду из ячейки памяти, которая находится непосредственно за только что выполненной командой. Однако этот порядок может быть изменен с помощью команд передачи управления (перехода). Эти команды указывают устройству управления, что ему следует продолжить выполнение программы, начиная с команды, содержащейся в некоторой другой ячейке памяти. Такой «скачок», или переход, в программе может выполняться не всегда, а только при выполнении некоторых условий, например, если некоторые числа равны, если в результате предыдущей арифметической операции получился нуль и т.д. Это позволяет использовать одни и те же последовательности команд в программе много раз (т.е. организовывать циклы), выполнять различные последовательности команд в зависимости от выполнения определенных условий и т.д., т.е. создавать сложные программы.
Таким образом, управляющее устройство выполняет инструкции программы автоматически, т.е. без вмешательства человека. Оно может обмениваться информацией с оперативной памятью и внешними устройствами компьютера. Поскольку внешние устройства, как правило, работают значительно медленнее, чем остальные части компьютера, управляющее устройство может приостанавливать выполнение программы до завершения операции ввода-вывода с внешним устройством. Все результаты выполненной программы должны быть ею выведены на внешние устройства компьютера, после чего компьютер переходит к ожиданию каких-либо сигналов внешних устройств.
Особенности современных компьютеров. Следует заметить, что схема устройства современных компьютеров несколько отличается от приведенной выше. В частности, арифметическо-логическое устройство и устройство управления, как правило, объединены в единое устройство — центральный процессор. Кроме того, процесс выполнения программ может прерываться для выполнения неотложных действий, связанных с поступившими сигналами от внешних устройств компьютера — прерываний. Многие быстродействующие компьютеры осуществляют параллельную обработку данных на нескольких процессорах.