Седьмое поколение компьютеров: характеристики, оборудование, программное обеспечение
В седьмое поколение компьютеров относится к значительному развитию устройств, которые могут стать крупномасштабным мультимедийным оборудованием с точки зрения видео и звука высокого уровня.
Появление этого поколения можно отнести к последним годам 2000-х годов, которые были этапом, когда старые электронно-лучевые мониторы начали вытесняться плоскими ЖК-экранами, и вот как это новая технология.
С введением этих новых элементов седьмое поколение компьютеров смогло постепенно заменить классические видео- и музыкальные проигрыватели, такие как телевизоры или музыкальные устройства.
Еще одной важной вехой этих домашних компьютеров стала их способность уменьшать размер и вес устройств, а также увеличивать объем памяти. Это позволило, например, появиться всем всем известным электронным книгам или Kindle.
Эта эволюция была настолько быстрой, что компьютеры стали настоящим центром домашних развлечений.
Нулевое поколение. Механические вычислители
Предпосылки к появлению компьютера формировались, наверное, с древних времен, однако нередко обзор начинают со счетной машины Блеза Паскаля, которую он сконструировал в 1642 г. Эта машина могла выполнять лишь операции сложения и вычитания. В 70-х годах того же века Готфрид Вильгельм Лейбниц построил машину, умеющую выполнять операции не только сложения и вычитания, но и умножения и деления.
В XIX веке большой вклад в будущее развитие вычислительной техники сделал Чарльз Бэббидж. Его разностная машина, хотя и умела только складывать и вычитать, зато результаты вычислений выдавливались на медной пластине (аналог средств ввода-вывода информации). В дальнейшем описанная Бэббиджем аналитическая машина должна была выполнять все четыре основные математические операции. Аналитическая машина состояла из памяти, вычислительного механизма и устройств ввода-вывода (прямо таки компьютер … только механический), а главное могла выполнять различные алгоритмы (в зависимости от того, какая перфокарта находилась в устройстве ввода). Программы для аналитической машины писала Ада Ловлейс (первый известный программист). На самом деле машина не была реализована в то время из-за технических и финансовых сложностей. Мир отставал от хода мыслей Бэббиджа.
В XX веке автоматические счетные машины конструировали Конрад Зус, Джорж Стибитс, Джон Атанасов. Машина последнего включала, можно сказать, прототип ОЗУ, а также использовала бинарную арифметику. Релейные компьютеры Говарда Айкена: «Марк I» и «Марк II» были схожи по архитектуре с аналитической машиной Бэббиджа.
Поколения компьютеров
Под поколением компьютеров понимают все типы и модели компьютеров, созданные различными конструкторскими коллективами в разных странах и построенные на единых научных и технических принципах.
Появление каждого нового поколения компьютеров определялось в первую очередь появлением новой элементной базы, т.е. электронных элементов, на основе которых создавались компьютеры (электронные лампы, полупроводниковые элементы и т.п.). Кроме того, новое поколение отличалось от предыдущего новыми решениями в архитектуре компьютеров, организации вычислительного процесса, режимах использования компьютеров и т.п.
Можно выделить пять поколений компьютеров. Остановимся кратко на их основных характеристиках.
Первое поколение (начало 50-х годов XX века). Элементная база – электронные лампы. Компьютеры отличались большими габаритами и весом, значительным потреблением энергии, малым быстродействием (10-20 тыс. операций в секунду), низкой надежностью и трудоемким программированием (непосредственно в кодах команд машины).
Второе поколение (с конца 50-х годов). Элементная база – полупроводниковые элементы (диоды, транзисторы). По сравнению с компьютерами первого поколения примерно на порядок улучшились все технические характеристики (например, быстродействие стало: сотни тысяч – один миллион операций в секунду). Для программирования начинают использоваться алгоритмические языки.
Третье поколение (начало 60-х годов). Элементная база – интегральные схемы. Применяется многослойный печатный монтаж. Резкое снижение габаритов компьютеров, повышение их быстродействия (до нескольких миллионов операций в секунду) и надежности. Обеспечивается доступ к компьютеру с удаленных терминалов.
Четвертое поколение (с середины 70-х годов). Элементная база – большие интегральные схемы и микропроцессоры. Еще на порядок улучшились технические характеристики (например, быстродействие возросло до десятков миллионов операций в секунду). Начинается массовый выпуск персональных компьютеров. Создаются многопроцессорные вычислительные системы высокой производительности (до сотен миллионов операций в секунду) и дешевые микро-компьютеры.
Пятое поколение (с середины 80-х годов). Начало разработки интеллектуальных компьютеров (так пока и не увенчалось полным успехом). Идет широкое внедрение компьютерных сетей и их объединение. Появляется глобальная компьютерная сеть Интернет. Начинает использоваться распределенная обработка данных. Расширяется внедрение компьютерных информационных технологий.
Основные отличительные черты интеллектуального компьютера:
1) общение пользователя с компьютером на языке проблемной области в естественной для пользователя форме (текст, речь, изображения и т.п.);
2) понимание компьютером описания проблемы и необходимых спецификаций (в идеале на естественном языке);
3) синтез процедур обработки (программных средств) на основе описаний и спецификаций;
4) манипулирование знаниями и получение логических выводов на основе накопленных знаний;
5) оптимальное распределение функций между аппаратными и программными средствами компьютера.
Компьютерами седьмого поколения являются
Историю развития современных ЭВМ разделяют на 4 поколения. Но деление компьютерной техники на поколения — весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.
Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в данной таблице:
П О К О Л Е Н И Я Э В М
1972 — настоящее время
Количество ЭВМ в мире (шт.)
Быстродействие (операций в сек.)
Гибкий и лазерный диск
Все ЭВМ I-го поколения были сделаны на основе электронных ламп, что делало их ненадежными — лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.
Притом для каждой машины использовался свой язык программирования. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства, оперативные запоминающие устройства были реализованы на основе ртутных линий задержки электроннолучевых трубок.
Эти неудобства начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.
· 1946г. ЭНИАК
В 1946 г. американские инженер-электронщик Дж. П. Эккерт и физик Дж. У. Моучли в Пенсильванском университете сконструировали, по заказу военного ведомства США, первую электронно-вычислительную машину — “Эниак” (Electronic Numerical Integrator and Computer), которая предназначалась для решения задач баллистики. Она работала в тысячу раз быстрее, чем «Марк-1», выполняя за одну секунду 300 умножений или 5000 сложений многоразрядных чисел. Размеры: 30 м. в длину, объём — 85 м 3 ., вес — 30 тонн. Использовалось около 20000 электронных ламп и 1500 реле. Мощность ее была до 150 кВт.
· 1949г. ЭДСАК
Первая машина с хранимой программой — ”Эдсак” — была создана в Кембриджском университете (Англия) в 1949 г. Она имела запоминающее устройство на 512 ртутных линиях задержки. Время выполнения сложения было 0,07 мс, умножения — 8,5 мс.
· 1951г. МЭСМ
В 1948г. году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ – Малой электронной счетно-решающей машины (МЭМС). В 1951г. МЭСМ официально вводится в эксплуатацию, на ней регулярно решаются вычислительные задачи. Машина оперировала с 20разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на электронных лампах.
· 1951г. UNIVAC-1. (Англия)
В 1951 г. была создана машина “Юнивак”(UNIVAC) — первый серийный компьютер с хранимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации.
· 1952-1953г. БЭСМ-2
Вводится в эксплуатацию БЭСМ-2 (большая электронная счетная машина) с быстродействием около 10 тыс. операций в секунду над 39-разрядными двоичными числами. Оперативная память на электронно-акустических линиях задержки — 1024 слова, затем на электронно-лучевых трубках и позже на ферритовых сердечниках. ВЗУ состояло из двух магнитных барабанов и магнитной ленты емкостью свыше 100 тыс. слов.
В 1958 г. в ЭВМ были применены полупроводниковые транзисторы, изобретённые в 1948 г. Уильямом Шокли, они были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. 1 транзистор способен был заменить ~ 40 электронных ламп и работал с большей скоростью.
Во II-ом поколении компьютеров дискретные транзисторные логические элементы вытеснили электронные лампы. В качестве носителей информации использовались магнитные ленты («БЭСМ-6», «Минск-2″,»Урал-14») и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски.
В качестве программного обеспечения стали использовать языки программирования высокого уровня, были написаны специальные трансляторы с этих языков на язык машинных команд. Для ускорения вычислений в этих машинах было реализовано некоторое перекрытие команд: последующая команда начинала выполняться до окончания предыдущей.
Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы, управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.
Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.
В 1960 г. появились первые интегральные системы (ИС), которые получили широкое распространение в связи с малыми размерами, но громадными возможностями. ИС — это кремниевый кристалл, площадь которого примерно 10 мм 2 . 1 ИС способна заменить десятки тысяч транзисторов. 1 кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. А компьютер с использованием ИС достигает производительности в 10 млн. операций в секунду.
В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.
Машины третьего поколения — это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.
Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.
Примеры машин третьего поколения — семейства IBM -360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.
(с 1972 г. по настоящее время)
Четвёртое поколение — это теперешнее поколение компьютерной техники, разработанное после 1970 года.
Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров.
В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см 2 .). БИСы применялись уже в таких компьютерах, как “Иллиак”, ”Эльбрус”, ”Макинтош ”. Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.
C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 — 64 Мбайт.
Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) — ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые персональные компьютеры- IBM PC .
Сейчас ведутся интенсивные разработки ЭВМ V поколения. Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография).
Ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие «интеллектуализации» компьютеров — устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволит общаться с ЭВМ всем пользователям, даже тем, кто не обладает специальных знаний в этой области. ЭВМ будет помощником человеку во всех областях.
Поколения ЭВМ
Можно выделить (5) основных поколений ЭВМ . Но деление компьютерной техники на поколения — весьма условная.
1. Элементная база: электронно-вакуумные лампы.
2. Соединение элементов: навесной монтаж проводами.
3. Габариты: ЭВМ выполнена в виде громадных шкафов.
Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести крупные корпорации и правительства.
Лампы потребляли большое количество электроэнергии и выделяли много тепла.
4. Быстродействие: (10-20) тыс. операций в секунду.
5. Эксплуатация: сложная из-за частого выхода из строя электронно-вакуумных ламп.
6. Программирование: машинные коды. При этом надо знать все команды машины, двоичное представление, архитектуру ЭВМ. В основном были заняты математики-программисты. Обслуживание ЭВМ требовало от персонала высокого профессионализма.
7. Оперативная память: до (2) Кбайт.
8. Данные вводились и выводились с помощью перфокарт, перфолент.
В (1948) году Джон Бардин, Уильям Шокли, Уолтер Браттейн изобрели транзистор, за изобретение транзистора они получили Нобелевскую премию в (1956) г.
В (1958) году создана машина М-20 , выполнявшая (20) тыс. операций в секунду — самая мощная ЭВМ (50-х) годов в Европе.
1. Элементная база: полупроводниковые элементы (транзисторы, диоды).
2. Соединение элементов: печатные платы и навесной монтаж.
3. Габариты: ЭВМ выполнена в виде однотипных стоек, чуть выше человеческого роста, но для размещения требовался специальный машинный зал.
4. Быстродействие: (100-500) тыс. операций в секунду.
5. Эксплуатация: вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность — оператор ЭВМ .
6. Программирование: на алгоритмических языках, появление первых операционных систем .
7. Оперативная память: (2-32) Кбайт.
8. Введён принцип разделения времени — совмещение во времени работы разных устройств.
Уже начиная со второго поколения, машины стали делиться на большие, средние и малые по признакам размеров, стоимости, вычислительных возможностей.
Так, небольшие отечественные машины второго поколения (« Наири », « Раздан », « Мир » и др.) были в конце (60)-х годов вполне доступны каждому вузу, в то время как упомянутая выше БЭСМ-6 имела профессиональные показатели (и стоимость) на (2-3) порядка выше.
В (1958) году Джек Килби и Роберт Нойс , независимо друг от друга, изобретают интегральную схему (ИС).
В (1965) году начат выпуск семейства машин третьего поколения IBM-360 (США). Модели имели единую систему команд и отличались друг от друга объёмом оперативной памяти и производительностью.
В (1967) году начат выпуск БЭСМ — 6 ((1) млн. операций в (1) с) и « Эльбрус » ((10) млн. операций в (1) с).
В (1968) году сотрудник Стэндфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши.
В (1969) году фирма IBM разделила понятия аппаратных средств (hardware) и программные средства (software). Фирма начала продавать программное обеспечение отдельно от железа, положив начало индустрии программного обеспечения.
(29) октября (1969) года проходит проверка работы самой первой глобальной военной компьютерной сети ARPANet , связывающей исследовательские лаборатории на территории США.
В (1971) году создан первый микропроцессор фирмой Intel . На (1) кристалле сформировали (2250) транзисторов.
1. Элементная база: интегральные схемы.
2. Соединение элементов: печатные платы.
3. Габариты: ЭВМ выполнена в виде однотипных стоек.
4. Быстродействие: (1-10) млн. операций в секунду.
5. Эксплуатация: вычислительные центры, дисплейные классы, новая специальность — системный программист .
6. Программирование: алгоритмические языки, операционные системы.
7. Оперативная память: (64) Кбайт.
При продвижении от первого к третьему поколению радикально изменились возможности программирования. Написание программ в машинном коде для машин первого поколения (и чуть более простое на Ассемблере) для большей части машин второго поколения является занятием, с которым подавляющее большинство современных программистов знакомятся при обучении в вузе.
Появление процедурных языков высокого уровня и трансляторов с них было первым шагом на пути радикального расширения круга программистов. Научные работники и инженеры сами стали писать программы для решения своих задач.
Уже в третьем поколении появились крупные унифицированные серии ЭВМ. Для больших и средних машин в США это прежде всего семейство IBM 360/370 . В СССР (70)-е и (80)-е годы были временем создания унифицированных серии: ЕС (единая система) ЭВМ (крупные и средние машины), СМ (система малых) ЭВМ и « Электроника » ( серия микро-ЭВМ).
В их основу были положены американские прототипы фирм IBM и DEC (Digital Equipment Corporation). Были созданы и выпущены десятки моделей ЭВМ, различающиеся назначением и производительностью. Их выпуск был практически прекращен в начале (90)-х годов.
Стив Джобс и Стив Возняк организовали предприятие по изготовлению персональных компьютеров « Apple », предназначенных для большого круга непрофессиональных пользователей. Продавался (Apple 1) по весьма интересной цене — (666,66) доллара. За десять месяцев удалось реализовать около двухсот комплектов.
В (1982) году фирма IBM приступила к выпуску компьютеров IBM РС с процессором Intel 8088 , в котором были заложены принципы открытой архитектуры, благодаря которому каждый компьютер может собираться как из кубиков, с учётом имеющихся средств и с возможностью последующих замен блоков и добавления новых.
1. Элементная база: большие интегральные схемы (БИС).
2. Соединение элементов: печатные платы.
3. Габариты: компактные ЭВМ, ноутбуки.
4. Быстродействие: (10-100) млн. операций в секунду.
5. Эксплуатация: многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ.
6. Программирование: базы и банки данных.
7. Оперативная память: (2-5) Мбайт.
8. Телекоммуникационная обработка данных, объединение в компьютерные сети.
Элементной базой являются сверхбольшие интегральные схемы (СБИС) с использованием оптоэлектронных принципов (лазеры, голография).