Электронные хранилища данных
Вначале прошлого века признаком успешности бизнеса часто считались дымящиеся трубы на фоне фабричных цехов. Сегодня признаком эффективности управления компанией принято считать реализованные проекты автоматизации и компьютеризация всех направлений деятельности организации. Однако это только внешний признак. В основе работы всех современных корпоративных систем лежит использование собственного хранилища данных. Эффективность его применения и полнота заполнения информацией являются важными факторами, в существенной степени определяющими успех ведения любого бизнеса.
Необходимость автоматизации и замены ручного ввода данных на автоматизированный с использованием электронных хранилищ вместо кип бумажных документов осознали уже во времена зарождения персональных компьютеров. Идея безбумажного офиса широко обсуждалась в исследовательской лаборатории PARC компании Xerox, ставшей колыбелью для многих продуктивных идей, широко используемых сегодня в персональных компьютерах. В небольшом калифорнийском городке Пало-Альто были изобретены первый лазерный принтер и прототип современной компьютерной мыши, сформированы черты пользовательского графического интерфейса и проработаны принципы работы сети Ethernet, ставшей основой для современного Интернета. Об этих разработках много говорят, тогда как об успехах PARC в области развития документооборота вспоминают редко.[6, 56]
В 1970 году ее тогдашний руководитель Джорж Пейк (George Pake) опубликовал статью в журнале Business Week, где рассказал о проводимых работах по разработке концепции современного офиса. Уже тогда было осознано, что спонтанное развитие в условиях нарастающего потока информации влечет бизнес в неправильном направлении. Офис должен упрощаться, чтобы все необходимое собиралось в одном месте. Этот принцип получил название “one-ream office”: вся информация накапливается в одном месте и доступна по первому требованию всем, кто в ней заинтересован.
Идея создания унифицированных хранилищ информации не получила тогда должного признания. На тот момент только зарождалась эра персональных компьютеров, а сама компания Xerox еще только искала свою нишу на рынке. После того, как компания начала производство аппаратов для копирования, слово “ксерокс” стало ассоциироваться с бесконечным потоком бумажных документов, которые множились, перекладывались с одного рабочего места на другое и требовали все больше и больше усилий на организацию их хранения.
Вопросы автоматизации офисной деятельности и перехода на безбумажные технологии хранения информации стали серьезно обсуждать только в 1990-х годах в связи с взрывообразным производством бумажных документов и возникшими трудностями, связанными с упорядочиванием их хранения, поиска и применения. Рынок начал искать новые эффективные решения.
Персональные компьютеры и гигантские электронные хранилища информации
Ускоренная подготовка к ЕГЭ с репетиторами Учи.Дома. Записывайтесь на бесплатное занятие!
—>
Задания Д2 № 8480
Какое из приведённых ниже слов (сочетаний слов) должно стоять на месте пропуска во втором (2) предложении текста? Выпишите это слово (сочетание слов).
(1)Первые компьютеры, создававшиеся как устройства для вычислений, позволяли проводить без участия человека сложные последовательности вычислительных операций по заранее заданной инструкции — программе. (2)Очень скоро оказалось, что компьютеры могут обрабатывать и другие виды информации — практически вся информация может быть представлена в числовой форме. (3)Именно это позволило превратить компьютер в универсальное средство для обработки всех видов информации, используемых человеком. |
Задания Д1 № 8479
Укажите номера предложений, в которых верно передана ГЛАВНАЯ информация, содержащаяся в тексте. Запишите номера этих предложений.
1) Благодаря возможности представлять практически любую информацию в числовой форме компьютер, первоначально созданный как устройство для вычислений, сегодня — универсальное средство для обработки всех видов информации, используемых человеком.
2) Принципиальное отличие сегодняшнего компьютера от первоначально созданного состоит в том, что он позволяет проводить без участия человека сложные последовательности вычислительных операций по заранее заданной инструкции — программе.
3) Компьютер, представляющий любую информацию в числовой форме, первоначально созданный как устройство для вычислений, сегодня является универсальным средством для обработки всех видов информации.
4) Компьютеры превратились в средства для обработки некоторых видов информации, используемых человеком, потому что проводят сложные вычислительные операции по заранее заданной инструкции.
5) Современные компьютеры могут обрабатывать без участия человека некоторую информацию, которая представлена в числовой форме.
Пояснение (см. также Правило ниже).
ГЛАВНАЯ информация, содержащаяся в тексте, наиболее полно передана в предложениях №1 и №3: компьютер — универсальное средство для обработки информации.
Правило: Задание 1. Определение главной информации текста
Задание 1 требует от учащегося умения проводить информационную обработку текста.
В нём всегда небольшой объём, всегда только три предложения и всегда два верных ответа.
Это задание, как и 2-е, проверяет способность учащихся улавливать логику развития мысли автора предъявленного для анализа текста. При этом экзаменуемые должны иметь представление о том, что одну и ту же информацию можно изложить, используя разные синтаксические конструкции, и задание 1 контрольных измерительных материалов нацеливает учащихся на использование всего богатства синтаксических конструкций, которыми располагает родной язык.
Чтобы решить задание 1, необходимо выделить главную информацию предлагаемого текста. Затем:
— Сжать эту информацию в одно предложение самому;
— Найти хотя бы одно предложение, в котором есть, на Ваш взгляд, ВСЯ информация, и сравнить с тем, что получилось у Вас;
— Обратить внимание на то, что в ТРЁХ из пяти предложений информация будет:
а) искажать текст, внося в него дополнения или нарушая причинно-следственные связи;
б) неполной, то есть будет передавать содержание верно, но лишь частично;
в) слишком краткой.
Далее находим предложение, как две капли воды похожее по смыслу на вычисленное нами. Та же информация. Те же факты. Но — другими синтаксическими конструкциями. Например, придаточное определительное будет заменено причастным оборотом. Однородные сказуемые — деепричастными оборотами и т. п.
Коротко о SAS, NAS, SAN
В рамках рассмотрения автономных систем хранения данных обязательно следует остановиться на том, каким образом осуществляется доступ хост-систем к накопителям. Это в значительной мере определяет сферы их использования и внутреннюю архитектуру.
- SAS (Server Attached Storage) — накопитель, подсоединенный к серверу [ второе название DAS (Direct Attached Storage) — напрямую подсоединённый накопитель ];
- NAS (Network Attached Storage) — накопитель, подсоединенный к сети;
- SAN (Storage Area Network) — сеть хранения данных.
Мы уже писали о технологиях SAS/DAS, NAS и SAN в статье посвященной SAN, если кого эта информация заинтересует, рекомендуем обратиться к страницам iXBT. Но всё же позволим себе немножко освежить материал с акцентом на практическое использование.
SAS/DAS — это достаточно простой традиционный способ подключения, который подразумевает прямое (отсюда и DAS) подсоединение системы хранения к одной или нескольким хост-системам через высокоскоростной канальный интерфейс. Часто в таких системах, для подсоединения накопителя к хосту используется такой же интерфейс, который используется для доступа к внутренним дискам хост-системы, что в общем случае обеспечивает высокое быстродействие и простое подключение.
SAS-систему можно рекомендовать к использованию в случае, если имеется потребность в высокоскоростной обработке данных больших объемов на одной или нескольких хост-системах. Это, например, может быть файл-сервер, графическая станция или отказоустойчивая кластерная система, состоящая из двух узлов.
Рисунок 3. Кластерная система с общим накопителем
NAS — накопитель, который подсоединен к сети и обеспечивает файловый (обратите внимание — файловый, а не блочный) доступ к данным для хост-систем в сети LAN/WAN. Клиенты, которые работает с NAS, для доступа к данным обычно используют протоколы NSF (Network File System) или CIFS (Common Internet File System). NAS интерпретирует команды файловых протоколов и исполняет запрос к дисковым накопителям в соответствии с используемым в нём канальным протоколом. Фактически, архитектура NAS — это эволюция файловых серверов. Главным преимуществом такого решения является быстрота развёртывания и качество организации доступа к файлам, благодаря специализации и узкой направленности.
Исходя из сказанного, NAS можно рекомендовать для использования в случае, если нужен сетевой доступ к файлам и достаточно важными факторами являются: простота решения (что обычно является неким гарантом качества) и простота его сопровождения и установки. Прекрасным примером является использование NAS в качестве файл-сервера в офисе небольшой компании, для которой важна простота установки и администрирования. Но в то же время, если вам нужен доступ к файлам с большого количества хост-систем, мощный NAS-накопитель, благодаря отточенному специализированному решению, способен обеспечить интенсивный обмен трафиком с огромным пулом серверов и рабочих станций при достаточно низкой стоимости используемой коммуникационной инфраструктуры (например, коммутаторов Gigabit Ethernet и медной витой пары).
SAN — сеть хранения данных. Обычно в SAN используется блочный доступ к данным, хотя возможно подключение к сетям хранения данных устройств, предоставляющих файловые сервисы, например NAS. В современных реализациях сети хранения данных чаще всего используют протокол Fibre Channel, но в общем случае это не является обязательным, в связи с чем, принято выделять отдельный класс Fibre Channel SAN (сети хранения данных на основе Fibre Channel).
Основой SAN является отдельная от LAN/WAN сеть, которая служит для организации доступа к данным серверов и рабочих станций, непосредственно занимающихся обработкой. Такая структура делает построение систем с высокой готовностью и высокой интенсивностью запросов относительно простой задачей. Несмотря на то, что SAN сегодня остается дорогим удовольствием, TCO (общая стоимость владения) для средних и больших систем, построенных с использованием технологии сетей хранения данных, является довольно низкой. Описание способов снижения TCO корпоративных систем хранения данных благодаря SAN можно найти на страницах ресурса techTarget: http://searchstorage.techtarget.com.
Сегодня стоимость дисковых накопителей с поддержкой Fibre Channel, как наиболее распространенного интерфейса для построения SAN, близка к стоимости систем с традиционными недорогими канальными интерфейсами (такими как параллельный SCSI). Главными стоимостными составляющими в SAN остается коммуникационная инфрастуктура, а также стоимость ее развёртывания и сопровождения. В связи с чем, в рамках SNIA и многих коммерческих организациях ведётся активная работа над технологиями IP Storage, что позволяет использовать значительно более недорогую аппаратуру и инфраструктуру IP-сетей, а также колоссальный опыт специалистов в этой сфере.
Примеров по эффективному использованию SAN можно привести достаточно много. Практически везде, где имеется необходимость использования нескольких серверов с совместной системой хранения данных, можно использовать SAN. Например, для организации коллективной работы над видеоданными или предварительной обработки печатной продукции. В такой сети каждый участник процесса обработки цифрового контента получает возможность практически одновременно работать над Терабайтами данных. Или, например, организация резервирования больших объемов данных, которыми пользуется множество серверов. При построении SAN и использовании независимого от LAN/WAN алгоритма резервирования данных и технологий «моментальной копии», можно резервировать почти любые объёмы информации без ущерба функциональности и производительности всего информационного комплекса.
Хранение информации
Хранение информации — это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга — библиотека, картина — музей, фотография — альбом). Этот процесс такой же древний, как и жизнь человеческой цивилизации. Уже в древности человек столкнулся с необходимостью хранения информации: зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер.
ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.
Информационная система — это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации. Наличие таких процедур — главная особенность информационных систем, отличающих их от простых скоплений информационных материалов.
История ЭВМ: от перфокарт до персональных компьютеров
Ровно 33 года назад, 12 августа 1981 года, на свет появился первый массовый персональный компьютер IBM PC, который со временем стали называть просто PC (ПК). То, что для нас уже давно стало привычным делом, в то время было настоящей революцией. M24.ru выделило основные этапы развития электронно-вычислительных машин.
Электронные вычислительные машины того времени представляли из себя массивные конструкции весом в несколько тонн. Каждый новый этап развития ЭВМ был связан не только с техническим прогрессом, но и с программным. Взять хотя бы Windows, который пришел на смену «бездушному» DOS.
Именно IBM, годом основания которой считается 1889 год, внесла огромный вклад в развитие компьютерной техники. Ее прародительница, корпорация CTR (Computing Tabulating Recording) включала в себя сразу три компании и выпускала самое различное электрическое оборудование: весы, сырорезки, приборы учета времени. После смены директора в 1914 году компания начала специализироваться на создании табуляционных машин (для обработки информации). Спустя 10 лет CTR поменяло свое название на International Business Machines или IBM.
M24.ru выделило основные этапы развития ЭВМ и их основных представителей, давших толчок к развитию современных компьютеров.
Еще в 1888 году инженер Герман Холлерит, основатель IBM, создал первую электромеханическую счетную машину — табулятор, который мог считывать и сортировать данные, закодированные на перфокартах (бумажных карточках с отверстиями). Его даже использовали при переписи населения в 1890 году в США.
При этом история компьютеров IBM началась спустя более полувека, в 1941 году, когда был разработан и создан первый программируемый компьютер «Марк 1» весом порядка 4,5 тонн, 17 метров в длину, 2,5 метра – в высоту. Президент IBM вложил в него 500 тысяч долларов. Впервые «Марк 1» был запущен в Гарвардском университете в 1944 году. Чтобы понять, насколько сложна была конструкция машины, достаточно сказать, что общая длина проводов составила 800 км. При этом компьютер осуществлял три операции сложения и вычитания в секунду.
Первое поколение ЭВМ
Первая ЭВМ, основанная на ламповых усилителях, под названием «Эниак» была создана в США в 1946 году. По размерам она была больше, чем «Марк 1»: 26 метров в длину, 6 метров в высоту, а ее вес составлял около 30 тонн. При этом по производительности «Эниак» в 1000 раз превышала «МАРК-1», а на ее создание ушло почти 500 тысяч долларов. Но у нее были существенные недостатки: очень мало памяти для хранения данных и долгое время перепрограммирования – от нескольких часов и до нескольких дней.
Кстати, среди создателей «Эниак» был ученый Джон фон Нейман, предложивший архитектуру ЭВМ, заложенную в компьютерах с конца 1940-х до середины 1950-х годов. Именно он осуществил переход к двоичной системе счисления и хранению полученной информации.
В 1951 году появился первый коммерческий компьютер UNIVAC, и уже в 1952 году вышел «IBM 701». Это был первый крупный ламповый научный коммерческий компьютер, причем создали его достаточно быстро – в течение двух лет. Его процессор работал значительно быстрее, чем у UNIVAC — 2200 операций в секунду против 455. В одну секунду процессор «IBM 701» мог выполнять почти 17 тысяч операций сложения и вычитания.
Второе поколение ЭВМ
Второе поколение ЭВМ использовало в своей основе транзисторы, созданные в 1947 году. Это была очередная революция, в результате которой существенно уменьшились размеры и энергопотребление компьютеров, так как сами биполярные транзисторы в разы меньше вакуумных ламп.
В 1959 году появились первые компьютеры IBM на транзисторах. Они были надежны, и ВВС США стали использовать их в системе раннего оповещения ПВО. А в 1960 году IBM разработала мощную систему Stretch или «IBM-7030». Она была и вправду сильна – создатели добились 100-кратного увеличения быстродействия. В течение трех лет он был самым быстрым компьютером в мире. Однако со временем IBM уменьшила его стоимость, а вскоре и вовсе сняла с производства.
Третье поколение ЭВМ
Третье поколение компьютеров связано с использованием интегральных схем (в которых используется от десятков до сотен миллионов транзисторов), впервые изготовленных в 1960 году американцем Робертом Нойсом.
В 1964 году IBM объявила о начале работы над целой линейкой IBM System/360.
System/360 хорошо продавалась даже спустя шесть лет после анонса системы. За 6 лет IBM выпустила более 30 тысяч машин. Однако затраты на разработку System/360 были очень велики — около пяти миллиардов долларов. Таким образом, System/360 заложила фундамент для следующих поколений, первым из которых был System/370.
Четвертое поколение ЭВМ
Четвертое поколение связано с использованием микропроцессоров. Первый такой микропроцессор под названием «Intel-4004» был создан в 1971 году компанией Intel, до сих пор остающейся в лидерах. Спустя 10 лет IBM выпустила первый персональный компьютер, который так и назывался IBM PC. Самая дорогая конфигурация стоила 3000 долларов и предназначалась для бизнеса, а конфигурация за 1500 долларов – для дома.
Процессор Intel 8088 работал на частоте 4,77 МГц (сейчас этот показатель в тысячи раз больше), а объем ОЗУ — 64 кбайта (сейчас – в миллионы раз больше). Для хранения информации использовались 5,25-дюймовые флоппи-дисководы. Жесткий диск нельзя было установить из-за недостаточной мощности блока питания.
Интересно, что разработкой компьютера занимались всего четыре человека. Причем IBM не запатентовала ни операционную систему DOS, ни BIOS, что породило огромное количество клонов. Уже в 1996 году IBM уступило первое место по продажам ПК на ею же основанном рынке.
Несмотря на то, что современные гаджеты сильно отличаются по характеристикам от своего предшественника, все они относятся к тому же поколению ЭВМ.
Основные толчки для развития компьютеров дала наука (появление ламп, а затем транзисторов). В настоящее время распространяется ввод информации с голоса, общения с машиной на человеческом языке (приложение Siri в iPhone) и активная работа над роботами. Основное мнение, что будущее – за квантовыми компьютерами, которые будут использовать в своей основе молекулы и нейрокомпьютерами, использующими центральную нервную систему человека и непосредственно его мозг. Однако для того, чтобы эти технологии появились, необходимо досконально изучить эти системы.
Роль оперативной памяти в общем «оркестре» компонентов компьютера
Работу компьютера следует рассматривать как «оркестр». «Музыкантами» в нем являются все его программные и аппаратные составляющие, в том числе центральный процессор, жесткий диск и операционная система, выполняющая, как известно нашим читателям, пять важнейших невидимых задач. Оперативная память, которую нередко называют просто «памятью» находится в числе наиболее важных компонентов компьютера. С того момента как вы включили компьютер и до того мгновения, когда вы его отключите, процессор будет непрерывно обращаться к памяти. Давайте рассмотрим типичный сценарий работы любого компьютера.
Вы включили компьютер. Он, в свою очередь, загрузил данные из постоянной памяти (ROM) и начал самотестирование при включении (power-on self-test, POST). Компьютер проверяет сам себя и определяет, исправен ли он и готов ли к новому трудовому сеансу. Целью этого этапа работы является проверка того, что все основные компоненты системы работают корректно. В ходе самотестирования контроллер памяти посредством быстрой операции чтения/записи проверяет все ячейки памяти на наличие или отсутствие ошибок. Процесс проверки выглядит так: бит информации записывается в память по определенному адресу, а затем считывается оттуда.
Компьютер загружает из ПЗУ базовую систему ввода-вывода, более известную по английской аббревиатуре BIOS. В этом «биосе» содержится базовая информация о накопителях, порядке загрузки, безопасности, автоматическом распознавании устройств (Plug and Play) и некоторые иные сведения.
Затем наступает черед загрузки операционной системы. Она загружается в оперативную память компьютера с жесткого диска (чаще всего в современном компьютере всё обстоит именно так, но возможны и иные сценарии). Важные компоненты операционной системы обычно находятся в оперативной памяти компьютера на протяжении всего времени работы с ним. Это дает центральному процессору возможность немедленного доступа к операционной системе, что повышает производительность и функциональность всего компьютера в целом.
Когда вы открываете приложение, оно записывается всё в ту же оперативную память. Объем памяти этого типа в наши дни хоть и велик, но при этом все равно значительно уступает ёмкости жесткого диска. В целях экономии оперативной памяти некоторые приложения записывают в нее только свои важнейшие компоненты, а остальные «подгружают» с жесткого диска по мере необходимости. Каждый файл, который загружается работающим приложением, тоже записывается в оперативную память.
Что происходит, когда вы сохраняете файл и закрываете приложение? Файл записывается на жесткий диск, а приложение «выталкивается» из оперативной памяти. То есть и само приложение, и связанные с ним файлы удаляются из оперативной памяти. Тем самым освобождается место для новой информации: других приложений и файлов. Если измененный файл не был сохранен перед удалением из временного хранилища, все изменения будут потеряны.
Из вышесказанного следует, что каждый раз, когда что-то загружается или открывается, оно помещается в оперативную память, то есть во временное хранилище данных. Центральному процессору проще получить доступ к информации из этого хранилища. Процессор запрашивает из оперативной памяти необходимые ему в процессе вычислений данные.
Всё это звучит несколько суховато и не дает полного представления о масштабах событий. Но поистине впечатляюще выглядит то, что в современных компьютерах обмен информацией между центральным процессором и оперативной памятью совершается миллионы раз в секунду.
Но запоминающие устройства не исчерпываются одной только оперативной памятью. Теперь, когда мы знаем, какое место занимает каждый тип памяти в общей картине современного цифрового устройства, нам осталось рассмотреть и другие разновидности хранилищ информации. И поэтому…