Основные принципы построения компьютера структура дж фон неймана

Принципы фон Неймана. Архитектура фон Неймана

• В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в
своей совместной статье изложили новые
принципы построения и функционирования ЭВМ.
• В последствие на основе этих принципов
производились
первые
два
поколения
компьютеров. В более поздних поколениях
происходили некоторые изменения, хотя принципы
Неймана актуальны и сегодня.

1. ИСПОЛЬЗОВАНИЕ ДВОИЧНОЙ
СИСТЕМЫ СЧИСЛЕНИЯ В
ВЫЧИСЛИТЕЛЬНЫХ МАШИНАХ.
Преимущество перед десятичной системой счисления
заключается в том, что устройства можно делать
достаточно простыми, арифметические и логические
операции в двоичной системе счисления также
выполняются достаточно просто.

Основные принципы построения компьютера структура дж фон неймана

1.6. ПРИНЦИПЫ ФОН НЕЙМАНА

В 1945 г. к работе над созданием вычислительной машины был привлечен знаменитый математик Джон фон Нейман.

В своем докладе Джон фон Нейман описал, как должен быть устро­ен компьютер для того, чтобы он был универсальным и эффективным устройством для обработки информации.

Устройства компьютера

Прежде всего, компьютер должен иметь следующие устройства:

1. арифметическо-логическое устройство, выполняющее арифметические и логические операции;

2. устройство управления, которое организует процесс выполне­ния программ;

3. запоминающее устройство, или память для хранения про­грамм и данных;

4. внешние устройства для ввода-вывода информации.

Память компьютера должна состоять из некоторого количества пронумерованных ячеек, в каждой из которых могут находиться или обра­батываемые данные, или инструкции программ. Все ячейки памяти должны быть одинаково легко доступны для других устройств компью­тера.

Вот каковы должны быть связи между устройствами компьютера (одинарные линии показывают управляющие связи, двойные — ин­формационные).

Особенности современных компьютеров. Следует заметить, что схема устройства современных компьютеров несколько отличается от приведенной выше. В частности, арифметическо-логическое устройство и устройство управления, как правило, объединены в единое устройство — центральный процессор. Кроме того, процесс выполнения программ может прерываться для выполнения неотложных действий связанных с поступившими сигналами от внешних устройств компьютера — прерываний. Многие быстродействующие компьютеры осуществляют параллельную обработку данных на нескольких процессорах. Тем не менее, большинство современных компьютеров в основных чер­тах соответствуют принципам, изложенным фон Нейманом.

Принципы работы компьютера

В общих чертах работу компью­тера можно описать так. Вначале с помощью какого-либо внешнего устройства в память компьютера вводится программа. Устройство уп­равления считывает содержимое ячейки памяти, где находится первая инструкция (команда) программы, и организует ее выполнение. Эта ко­манда может задавать выполнение арифметических или логических операций, чтение из памяти данных для выполнения арифметических или логических операций или запись их результатов в память, ввод данных из внешнего устройства в память или вывод данных из памяти на внешнее устройство.

Как правило, после выполнения одной команды устройство управ­ления начинает выполнять команду из ячейки памяти, которая нахо­дится непосредственно за только что выполненной командой. Однако этот порядок может быть изменен с помощью команд передачи управ­ления (перехода). Эти команды указывают устройству управления, что ему следует продолжить выполнение программы, начиная с команды, содержащейся в некоторой другой ячейке памяти. Такой «скачок», или переход, в программе может выполняться не всегда, а только при вы­полнении некоторых условий, например, если некоторые числа равны, если в результате предыдущей арифметической операции получился пуль и т.д. Это позволяет использовать одни и те же последовательно­сти команд в программе много раз (т.е. организовывать циклы), выпол­нять различные последовательности команд в зависимости от выполне­ния определенных условий и т.д., т.е. создавать сложные программы. Таким образом, управляющее устройство выполняет инструкции программы автоматически, т.е. без вмешательства человека. Оно может обмениваться информацией с оперативной памятью и внешними устройствами компьютера. Поскольку внешние устройства, как правило, работают значительно медленнее, чем остальные части компьютера, управляющее устройство может приостанавливать выполнение программы до завершения операции ввода-вывода. Все результаты выполненной программы должны быть ею выведены на внешние устройства компьютера, после чего компьютер переходит к ожиданию каких-либо сигналов внешних устройств.

Принципы фон Неймана

В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В дальнейшем на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня.

По сути, Нейману удалось обобщить научные разработки и открытия многих других ученых и сформулировать на их основе принципиально новое.

Принцип программного управления: программа состоит из набора команд, выполняющихся процессором определённой последовательности.

Принцип однородности памяти:программы и данные хранятся в одной и той же памяти .

Принцип адресности:структурно основная память состоит из пронумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка.

Компьютеры, построенные на перечисленных принципах, относятся к типу фон – неймановских.

Самым главным следствием этих принципов можно назвать то, что теперь программа уже не была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. Для сравнения, программа компьютера ENIAC (где не было хранимой в памяти программы) определялась специальными перемычками на панели. Чтобы перепрограммировать машину (установить перемычки по-другому) мог потребоваться далеко не один день. И хотя программы для современных компьютеров могут писаться годы, однако они работают на миллионах компьютеров, установка программ не требует значительных временных затрат.

Помимо перечисленных трёх принципов фон Нейман предложил принцип двоичного кодирования —для представления данных и команд используется двоичная система счисления (первые машины использовали десятичную систему счисления). Но последующие разработки показали, возможность использования нетрадиционных систем счисления.

В начале 1956 г . по инициативе академика С.Л. Соболева, заведующего кафедрой вычислительной математики на механико-математическом факультете Московского университета, в вычислительном центре МГУ был учрежден отдел электроники и стал работать семинар с целью создать практичный образец цифровой вычислительной машины, предназначенной для использования в вузах, а также в лабораториях и конструкторских бюро промышленных предприятий. Требовалось разработать малую ЭВМ, простую в освоении и применениях, надежную, недорогую и вместе с тем эффективную в широком спектре задач. Обстоятельное изучение в течение года имевшихся в то время вычислительных машин и технических возможностей их реализации привело к нестандартному решению употребить в создаваемой машине не двоичный, а троичный симметричный код, реализовав уравновешенную систему счисления, которую Д. Кнут двадцать лет спустя назовет быть может, самой изящной и как затем стало известно, достоинства которой были выявлены К. Шенноном в 1950г. В отличие от общепринятого в современных компьютерах двоичного кода с цифрами 0, 1, арифметически неполноценного вследствие невозможности непосредственного представления в нем отрицательных чисел, троичный код с цифрами -1, 0, 1 обеспечивает оптимальное построение арифметики чисел со знаком. Троичная система счисления основана на том же позиционном принципе кодирования чисел, что и принятая в современных компьютерах двоичная система, однако вес i -й позиции (разряда) в ней равен не 2 i , а 3 i . При этом сами разряды не двухзначны (не биты), а трехзначны (триты) — помимо 0 и 1 допускают третье значение, которым в симметричной системе служит -1, благодаря чему единообразно представимы как положительные, так и отрицательные числа. Значение n -тритного целого числа N определяется аналогично значению n -битного:

где а i ∈ — значение цифры i -го разряда.

В апреле 1960 г. были проведены междуведомственные испытания опытного образца вычислительной машины, названной «Сетунь».По результатам этих испытаний “Сетунь” была признана первым действующим образцом универсальной вычислительной машины на безламповых элементах, которому свойственны “высокая производительность, достаточная надежность, малые габариты и простота технического обслуживания”.“Сетунь”, благодаря естественности троичного симметричного кода, оказалась поистине универсальным, несложно программируемым и весьма эффективным вычислительным инструментом, положительно зарекомендовавшим себя, в частности, как техническое средство обучения вычислительной математике более чем в тридцати вузах. А в Военно-воздушной инженерной академии им. Жуковского именно на “Сетуни” была впервые реализована автоматизированная система компьютерного обучения.

В соответствии с принципами фон Неймана компьютер состоит из:

· арифметико-логического устройства — АЛУ (англ. ALU, Arithmetic and Logic Unit), выполняющего арифметические и логические операции; устройства управления —УУ, предназначенного для организации выполнения программ;

· запоминающих устройств (ЗУ), в т.ч. оперативного запоминающего устройства (ОЗУ – первичная память) и внешнего запоминающего устройства (ВЗУ); в основной памятихранятся данные и программы; модуль памяти состоит из множества пронумерованных ячеек, в каждую ячейку может быть записано двоичное число, которое интерпретируется либо как команда, либо как данные;

· устройств ввода-вывода, которые служат для передачи данных между компьюте­ром и внешним окружением, состоящим из различных периферийных уст­ройств, в число которых входят вторичная память, коммуникационное обо­рудование и терминалы.

Обеспечивает взаимодействие между процессором (АЛУ и УУ), основной памятью и устройствами ввода – вывода системная шина.

Фон-неймановская архитектура компьютера считается классической, на ней построено большинство компьютеров. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных. Идея хранения компьютерных программ в общей памяти позволяла превратить вычислительные машины в универсальные устройства, которые способны выполнять широкий круг задач. Программы и данные вводятся в память из устройства ввода через арифметико-логическое устройство. Все команды программы записываются в соседние ячейки памяти, а данные для обработки могут содержаться в произвольных ячейках. У любой программы последняя команда должна быть командой завершения работы.

Подавляющее большинство вычислительных машин на сегодняшний день – фон-Неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины). По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

2.2 Команда, форматы команд

Команда – это описание элементарной операции, которую должен выполнить компьютер.

Количество разрядов, которые отводятся для записи команды, зависит от аппаратных средств конкретной модели компьютера. В связи с этим, структуру конкретной команды будем рассматривать для общего случая.

В общем случае команда содержит следующую информацию:

Ø код выполняемой операции;

Ø указания по определению операндов или их адресов;

Ø указания по размещению получаемого результата.

Для любой конкретной машины должно быть задано число двоичных разрядов, отводимых в команде для каждого из её адресов и для кода операций, так же как и сами фактические коды операций. Число двоичных разрядов в команде, отведенное при конструировании машины для каждого из её адресов, определяет верхнюю границу числа ячеек памяти машины, имеющих отдельные адреса: если адрес в команде изображается с помощью n двоичных разрядов, то в памяти с быстрой выборкой не может содержаться больше чем 2 n ячеек.

Команды выполняются последовательно, начиная с начального адреса (точки входа) исполняемой программы, адрес каждой следующей команды на единицу больше адреса предыдущей команды, если она не являлась командой перехода.

В современных машинах длина команд переменная (как правило, от двух до четырёх байт), а способы указания адресов переменных весьма разнообразны.

В адресной части команды может быть указан, например:

— адрес адреса операнда (номер байта, начиная с которого расположен адрес операнда) и т.д.

Рассмотрим структуру возможных вариантов нескольких типов команд.

Код операции Адрес первого операнда Адрес второго операнда Адрес результата
Код операции Адрес первого операнда Адрес второго операнда
Код операции Адрес первого операнда
Код Операции

Рассмотрим бинарную операцию сложения: с = a + b.

Для каждой переменной в памяти определим условные адреса:

переменные Адреса Значение
A A1
B A2 -7
C A3 -2

Пусть 53 – код операции сложения.

В этом случае структура трёхадресной команды выглядит следующим образом:

Код Операции (КОП) Адрес первого операнда Адрес второго операнда Адрес результата
A1 A2 A3

Процесс выполнения команды разбивается на следующие этапы:

— из ячейки памяти, адрес которой хранится в счётчике команд, выбирается очередная команда; содержимое счётчика изменяется и теперь содержит адрес следующей по порядку команды;

— выбранная команда передаётся в устройство управления на регистр команд;

— устройство управления расшифровывает адресное поле команды;

— по сигналам УУ значения операндов считываются из памяти и записываются в АЛУ на специальные регистры операндов;

— УУ расшифровывает код операции и выдаёт в АЛУ сигнал выполнить соответствующую операцию над данными;

— результат операции в данном случае отправляется в память( в одноадресных и двухадресных ЭВМ остаётся в процессоре);

— все предыдущие действия выполняются до достижения команды ОСТАНОВ.

2.3 ЭВМ как автомат

«Электрон­ные цифровые машины с программным управлением представляют собой пример одного из наиболее распространенных в настоящее время типов преобразователей дискретной информации, называемых дискретными или цифровыми автоматами»(Глушков В.М. Синтез цифровых автоматов)

Любая вычислительная машина работает автоматически (будь то большая или малая ЭВМ, персональный компь­ютер или Супер-ЭВМ). В этом смысле вычислительная машина как автомат может быть описана структурной схемой, представленной на рис. 2.1.

В предыдущих параграфах была рассмотрена структурная схема вычислительной машины. Исходя из структурной схемы вычислительной машины и схемы автомата, мы можем сопоставить блоки схемы автомата и элементы структурной схемы ЭВМ.

В качестве исполнительных элементов в автомат включаются:

· устройства ввода—вывода информации.

Управляющим элементом автомата является устройство управления, которое собственно обеспечивает автоматический режим работы. Как уже отмечалось, в современных вычислительных устройствах основным исполнительным элементом является процессор или микропроцессор, который содержит в себе АЛУ, память, устройство управления.

Вспомогательными устройствами автомата могут быть всевозможные дополнительные средства, улучшающие или расширяющие возможности автомата.

studopedia.org — Студопедия.Орг — 2014-2022 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.026 с) .

Архитектура Фон Неймана

В каждой области науки и техники существуют некоторые фундаментальные идеи или принципы, которые определяют ее содержание и развитие. В компьютерной науке роль таких фундаментальных идей сыграли принципы, сформулированные независимо друг от друга — американским математиком и физиком Джоном фон Нейманом(1903-1957) и советским ученым Сергеем Лебедевым(1902-1974). Эти принципы определяют основные организации компьютера.

Считается, что первый электронный компьютер ЭНИАК был изготовлен в США в 1946 году. ЭНИАК состоял из 18000 электронных ламп и 1500 реле и весил 30 тонн. Он и мел 20 регистров, каждый из которых мог содержать 10-разрядное десятичное число.Блестящий анализ сильных и слабых сторон проекта ЭНИАК был дан в отчете Принстонского института перспективных исследований «Предварительное обсуждение логического конструирование электронного вычислительного устройства» (июнь 1946 года). Этот отчет, составленный выдающимся американским математиком Джоном фон Нейманом и его коллегами по Принстонскому институту Г.Голдстайном и А.Берксом, представлял проект нового электронного компьютера. Идеи, высказанные в этом отчете, известны под названием «Неймановских Принципов».

Говоря об основоположниках теоретической информатики, нельзя не упомянуть о двух научных достижениях: алгебре логики и теории алгоритмов. Алгебра логики была разработана в середине 19-го века английским математиком Джорджем Булем и рассматривалась им в качестве метода математизации формальной логики. Разработка электронных компьютеров на двухпозиционных электронных элементах создала возможным широкое использование «булевой логики» для проектирования компьютерных схем. В первой половине 30-х годов 20-гостолетия появились математические работы, в которых была доказана принципиальная возможность решения с помощью автоматов любой проблемы, поддающейся алгоритмический обработке. Данное доказательство содержалось в опубликованных в 1936 году работах английского математика Э.Поста. (Джордж Буль (1815-1864), Алан Тьюринг (1912-1954)).

В Советском Союзе работы по созданию электронных компьютеров были начаты несколько позже. Первый советский электронный компьютер был изготовлен в Киеве в 1953 году. Он назывался МЭСМ (малая электронная вычислительная машина), а его главным конструктором был академик Сергей Лебедев, автор проектов компьютеров серии БЭСМ (большая электронная счетная машина). В проекте МЭСМ Сергей Лебедев независимо от Неймана пришел к тем же идеям конструирования электронных компьютеров, что и Нейман.

Сущность «Неймановских Принципов» состояла в следующем:

1.Компьютер включает связанные между собой Процессор (арифметическое устройство т устройство управления), Память и Устройство ввода-вывода.

2.Компьютеры на электронных элементах должны работать не в десятичной, а в двоичной системе счисления.

3.Программа, так же как и числа, с которыми оперирует компьютер, записываются в двоичном коде, то есть по форме представления команды и числа однотипны.

4.Программа должна размещаться в одном из блоков компьютера — в запоминающем устройстве, которое имеет произвольный доступ. Программа и данные могут находиться в общей памяти (принстонская архитектура).

5.Трудности физической реализации запоминающего устройства большого быстродействия, энергонезависимого и большой памяти требуют иерархической организации памяти. Программа выполняется из основной памяти, а сохраняется в энергонезависимой вторичной памяти (магнитных дисках). Файл — идентификационная совокупность экземпляровполностью описанного в конкретной программе типа данных, находящихся вне программыво внешней памяти и доступных программе посредством специальных операций.

6. Арифметико-логическое устройство (АЛУ) компьютера конструируется на основе схем, выполняющих операцию сложения, сдвига, логическую операцию. Помимо результата операции, АЛУ формирует ряд признаков результата (флагов) , которые могут анализироваться при выполнении команда условной передачи управления.

7. В компьютере используется параллельный принцип организации вычислительного процесса.

8. Централизованное последовательное управление при выполнении команд.

9. Линейная структура адресации памяти.

10. Низкий уровень машинного языка. Отсутствует микропрограммируемость.

Стоит подчеркнуть, что архитектура Фон Неймана у большинства ассоциируется как предложение использования двоичной системы счисления.

Архитектура Фон Неймана

Структурная схема типовой ЭВМ


Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector