Основные функциональные устройства компьютеров

Учитель информатики

Информатика. 7 класса. Босова Л.Л. Оглавление

Одним из важных объектов, изучаемых на уроках информатики, является компьютер, получивший своё название по основной функции — проведению вычислений (англ, computer — вычислитель).

Первый компьютер был создан в 1945 г. в США. Познакомиться с историей компьютеров вы можете, совершив виртуальное путешествие по музеям вычислительной техники. Так, много интересной информации о компьютерах можно узнать, посетив Виртуальный музей информатики (informat444. narod.ru). Обратите внимание, что для обозначения компьютерной техники 1940-1970-х годов часто используется аббревиатура ЭВМ (электронная вычислительная машина).

Современный компьютер — универсальное электронное программно управляемое устройство для работы с информацией.

Универсальным устройством компьютер называется потому, что он может применяться для многих целей — обрабатывать, хранить и передавать самую разнообразную информацию, использоваться человеком в разных видах деятельности.

Современные компьютеры могут обрабатывать разные виды информации: числа, текст, изображения, звуки. Информация любого вида представляется в компьютере в виде двоичного кода — последовательностей нулей и единиц. Некоторые способы двоичного кодирования представлены на рис. 2.1.

Информацию, предназначенную для обработки на компьютере и представленную в виде двоичного кода, принято называть двоичными данными или просто данными. Одним из основных достоинств двоичных данных является то, что их копируют, хранят и передают с использованием одних и тех же универсальных методов, независимо от вида исходной информации.

Способы двоичного кодирования текстов, звуков (голоса, музыки), изображений (фотографий, иллюстраций), последовательностей изображений (кино и видео), а также трёхмерных объектов были придуманы в 80-х годах прошлого века. Позже мы рассмотрим способы двоичного кодирования числовой, текстовой, графической и звуковой информации более подробно. Теперь же главное — знать, что последовательностям 1 и 0 в компьютерном представлении соответствуют электрические сигналы — «включено» и «выключено». Компьютер называется электронным устройством, потому что он состоит из множества электронных компонентов, обрабатывающих эти сигналы.

Обработку данных компьютер проводит в соответствии с программой — последовательностью команд, которые необходимо выполнить над данными для решения поставленной задачи. Как и данные, программы представляются в компьютере в виде двоичного кода. Программно управляемым устройством компьютер называется потому, что его работа осуществляется под управлением установленных на нём программ. Это программный принцип работы компьютера.

Современные компьютеры бывают самыми разными: от мощных компьютерных систем, занимающих целые залы и обеспечивающих одновременную работу многих пользователей, до мини-компьютеров, помещающихся на ладони (рис. 2.2).

Сегодня самым распространённым видом компьютеров является персональный компьютер (ПК) — компьютер, предназначенный для работы одного человека.

Основные функциональные устройства компьютеров.

Конфигурацию ПК можно изменять по мере необходимости. Но, существует понятие базовой конфигурации, которую можно считать типичной:

Компьютеры выпускаются и в портативном варианте (laptop или notebook выполнение). В этом случае, системный блок, монитор и клавиатура размещены в одном корпусе: системный блок находится под клавиатурой, а монитор встроен в крышку.

Системный блок — основная составляющая ПК, в середине которой находятся важнейшие компоненты. Устройства, находящиеся в середине системного блока называют внутренними, а устройства, подсоединенные извне называют внешними. Внешние дополнительные устройства, предназначенные для ввода и вывода информации называются также периферийными.

По внешнему виду, системные блоки отличаются формой корпуса, который может быть горизонтального (desktop) или вертикального (tower) выполнение. Корпусы вертикального выполнения могут иметь разные размеры: полноразмерный (BigTower), среднеразмерный (MidiTower), малоразмерный (MiniTower). Корпусы горизонтального выполнения бывают двух форматов: узкий (Full-AT) и очень узкий (Baby-AT). Корпусы персональных компьютеров имеют разные конструкторские особенности и дополнительные элементы (элементы блокировки несанкционированного доступа, средства контроля внутренней температуры, шторки от пыли).

Корпусы поставляются вместе с блоком питания, мощность которого является одним из параметров корпуса. Для массовых моделей достаточной является мощность 200-250 Вт.

Основные узлы системного блока:

электрические платы, руководящие работой компьютера (микропроцессор, оперативная память, контроллеры устройств и т.п.);

накопитель на жестком диске (винчестер), предназначенный для чтения или записи информации;

накопители (дисководы) для гибких магнитных дисков (дискет).

Основной платой ПК является материнская плата (MotherBoard), которая является главной платой в компьютере, блок питания, накопители на дисках, разъемы для подключения дополнительных устройств, платы расширения с контроллерами (адаптерами внешних устройств);

На системной материнской плате размещены:

процессор — основная микросхема, выполняющая математические и логические операции;

чипсет (микропроцессорный комплект) — набор микросхем, которые руководят работой внутренних устройств ПК и определяют основные функциональные возможности материнской платы;

генератор тактовых импульсов;

микросхемы ПЗУ и ОЗУ;

адаптеры клавиатуры, дисков;

контроллер прерываний (прерывание – временный останов программы для срочного выполнения более важной на данный момент операции);

шины — набор проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;

оперативное запоминающее устройство (ОЗУ) — набор микросхем, предназначенных для временного сохранения данных, пока включен компьютер;

постоянное запоминающее устройство (ПЗУ) — микросхема, предназначенная для долговременного хранения данных, даже при отключенном компьютере;

разъемы для подсоединения дополнительных устройств (слоты);

таймер и др.

Т.е. мы видим, что внутри проц. блока находится много электронных компонентов. Они связаны друг с другом системой проводников – шинами (конструктивно выполнены на матплате), а специальные контроллеры распределяют сигналы между компонентами.

Главную системную шину компьютера образуют (начиная с IBM HC/AT 286) шина данных и адресная шина с контроллером. С помощью сигналов шины данных процессор осущ. обмен данными с теми яч. памяти, адреса которых выставлены на адресной шине. Главную шину можно рассматривать как самостоятельное устройство, позволяющее подключать большое число самых разнообразных устройств. Основной стандарт для этой шины – ISA (EISA); благодаря ему сохраняется принцип открытой архитектуры – позволяющий подключать к материнской плате дополнительные устройства через специальные разъемы слоты. предназначен для 8-разрядных устройств, EISA предназначен для 16 разрядных устройств и 32 разрядных процессоров.

Для наращивания производительности новой техники было принято не совершенствовать главную шину, а создавать новые локальные шины для подключения периферийных устройств, нуждающихся в повышенной скорости передачи данных. ISA постепенно утрачивала свое значение, т.к. многие дополнительные платы, такие как контроллеры дисков, видеокарты, звуковые карты «отрывались» от главной шины и подключились к локальной. Выпуск устройств, совместимых с ISA практически прекращен. На сегодняшний день приняты следующие стандарты локальной шины – VLB (в основном для связи с видеоадаптером), PCI (32 р., 33 МГц, более универсальна – для связи с большим количеством устройств), AGP (66 МГц, работает быстрее, чем PCI, по сути является графическим ускорителем), USB (позволяет присоединить несколько дополнительных устройств без выключения компьютера).

Микропроцессор – основной компонент компьютера. В больших компьютерах занимает целую стойку и называется центральным процессором. Микропроцессор – центральный процессор CPU — функционально законченное программно-управляемое устройство обработки информации, выполненное в виде одной или нескольких больших (БИС) или сверхбольших (СБИС) интегральных схем.

МП с другими участниками процесса обработки информации связан шинами данных, адресной и управляющей, с помощью которой в процессор вводятся команды. Разрядность шины данных микропроцессора (МП) определяет разрядность ПК в целом. МП можно разделить на три группы:

— CISC – с полным набором команд;

— RISC – с сокращенным набором команд;

— MISC – с минимальным набором команд (очень высокое быстродействие).

Функционально МП состоит из двух частей:

операционной, содержащей устройство управления, арифметико-логическое устройство и микропроцессорную память;

интерфейсной, содержащей адресные регистры микропроцессорной памяти, блок регистров команд, схемы управления шиной и портами.

Главное требование к МП – производительность. Он работает в том ритме, который ему задает тактовый генератор. Чем выше частота — тактовая частота, которую задает генератор, тем быстрее работает процессор.Тактовая частота измеряется в Гц (1 мегагерц – это миллион тактов в секунду). Ученые и инженеры все время пытаются улучшить эту характеристику, преодолевая на пути своих разработок физические проблемы – на высоких частотах меняются свойства проводников. Сегодня нормой является частота 3 ГГц. Ячейка МП – регистры. В отличие от ячеек памяти, в регистрах данные не только хранятся, но и преобразуются по командам, поступающим по управляющей шине. Совокупность команд, которые может выполнять конкретный МП – это его система команд. Компьютеры программно несовместимы, когда программа, написанная для компьютера с одним процессором не м/б выполнена на компьютере с др. МП. (Пример – программы для IBM нельзя использовать на Макинтошах, но данные можно кодировать так, что их можно использовать на совершенно разных компьютерах).

В настоящее время выпускается несколько сотен различных микропроцессоров, но наиболее популярными и распространенными являются МП фирмы Intel и Intel–совместимые. Наиболее конкурентно способными являются МП ATHLON фирмы AMD. При несколько меньшей тактовой частоте эти МП не уступают в производительности МП фирмы Intel. В кристалл интегрирована КЭШ-память, работающая на той же частоте. Отпала необходимость в использовании процессорных картриджей и можно опять располагать горизонтально разъем с отверстиями для ножек процессора.

Оперативная память предназначена для хранения данных во время работы ПК. На свойства компьютера влияют три фактора, связанных с ОП: объем, тип, конструктив. Размер ОП измеряется мегабайтах. При переводе из байт в мега- или килобайты получаются некруглые числа (для десятичной системы). Чем меньше памяти, тем медленней работает компьютер. Допустим, объем файла данных более объема ОП. ОС заполняет свободный ресурс памяти, а на жестком диске создает файл подкачки размером, «непоместившимся» в ОП – виртуальную память. Компьютер «думает», что у него память равна объему обрабатываемого файла. Но МП о жестком диске не знает и всю информацию ищет в ОП. ОС перехватывает его обращение, тормозит работу над задачей и меняет содержимое ОП данными из виртуальной памяти. ЖД – механическое устройство, не может работать со скоростью электронов в микросхемах. Следовательно работа ПК замедляется. Если диск часто трещит – не пора ли добавить памяти?

Тип памяти влияет на ее быстродействие, которое измеряется в наносекундах. Сегодня наиболее распространены микросхемы типа SDRAM со временем доступа 4-10 нс. Более быстрая память стоит дороже. Новые типы памяти – DDR SDRAM и DRD RAM предполагают обращение к памяти с более высокой частотой, чем частота матплаты. DDR SDRAM – удвоенную частоту, DRD RAM учетверенную. При приобретении памяти нужно задавать вопросом о ее совместимости с форматом разъема памяти.

В виде отдельных (Single Inline Memory Module) — модулей ОП начала устанавливаться на материнские платы ПК 3 поколения. На современных ПК устанавливаются DIMM (Dual Inline Memory Module) – модули. Конструктивно SIMM выглядит как множество микросхем (8), установленных на плату удлиненной формы, а DIMM – просто как удлиненная плата.

Видеокарта – видеоадаптер, видеоконтроллер служит для вывода графической информации на экран.

MDA – монохромный дисплейный адаптер был первым стандартом. На экран выводилась только текстовая информация.

CGA – цветной графический адаптер воспроизводил одновременно 4 цвета из 16 возможных.

EGA — одновременно производил до 16 цветов, выбираемых из 64 возможных.

VGA – появился в компьютерах 2 поколения (286), воспроизводят два режима работы 640х480х16 и 320х200х256 (1-горизонталь, 2- вертикаль – графическое расширение, 3 – цветовое разрешение или глубина цвета).

SVGA — режим VGA, увеличенный «сверху», т.е. увеличивается видеопамять – увеличивается графическое разрешения и количество цветов, воспроизводимых одновременно.

Назначение видеоадаптера – освободить процессор от управления выводом изображения на экран, а память хранить эти изображения. Адаптеры с доп. функцией по автоматической обработке этих операций называется графическим ускорителем.

Звуковая карта — т.к. изначально ПК не был предназначен для обработки звуковой информации, стандарты на звуковое оборудование до сих пор не обозначены строго. Основным стандартом считается оборудование компании CREATIVE Labs. Основной параметр – разрядность. Чем выше разрядность, тем выше качество звука (сегодня – 32 р.). Карта освобождает процессор от обработки звука.

Последнее изменение этой страницы: 2017-04-12; Просмотров: 1709; Нарушение авторского права страницы

lektsia.com 2007 — 2022 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.027 с.) Главная | Обратная связь

Архитектура персонального компьютера. Назначение основных узлов. Функциональные характеристики компьютера

В результате изучения данной части студент должен изучить технические средства реализации информационных процессов; информационно-логические основы построения персонального компьютера, его функционально-структурную организацию; основные функциональные устройства, их назначение и характеристики; принцип программного управления: работа блоков ЭВМ по заданной программе; основные внешние устройства ПК; тенденции развития средств вычислительной техники.

Компьютер — это многофункциональное электронное устройство, предназначенное для накопления, обработки и передачи информации.

В основу построения большинства компьютеров положены принципы, сформулированные Джоном фон Нейманом:

1. Принцип программного управления — программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

2. Принцип однородности памяти — программы и данные хранятся в одной и той же памяти; над командами можно выполнять те же действия, что и над данными.

3. Принцип адресности — основная память структурно состоит из пронумерованных ячеек.

Под архитектурой компьютера понимается его логическая организация, структура и ресурсы, т.е. средства вычислительной системы, которые могут быть выделены процессу обработки данных.

Компьютеры, построенные на этих принципах, имеют классическую архитектуру.

Архитектура компьютера определяет принцип действия, информационные связи и взаимное соединение основных логических узлов компьютера, к которым относятся:

Конструктивно персональные компьютеры выполнены в виде центрального системного блока, к которому через специальные разъемы присоединяются другие устройства.

В состав системного блока входят все основные узлы компьютера:

— накопитель на жестком магнитном диске;

— накопитель на гибком магнитном диске;

— накопитель на оптическом диске;

— разъемы для дополнительных устройств.

Структурная схема персонального компьютера

На системной (материнской) плате в свою очередь размещаются:

— генератор тактовых импульсов;

— контроллеры внешних устройств;

— звуковая и видео карты;

Архитектура современных персональных компьютеров основана на магистрально-модульном принципе. Модульный принцип позволяет пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация системы опирается на магистральный принцип обмена информацией. Все контроллеры устройств взаимодействуют с микропроцессором и оперативной памятью через системную магистраль передачи данных, называемую системной шиной. Системная шина выполняется в виде печатного мостика на материнской плате.

Системная шина является основной интерфейсной системой компьютера, обеспечивающей сопряжение и связь всех его устройств между собой. Системная шина обеспечивает три направления передачи информации:

— между микропроцессором и основной памятью;

— между микропроцессором и портами ввода-вывода внешних устройств;

— между основной памятью и портами ввода-вывода внешних устройств.

Порты ввода-вывода всех устройств через соответствующие разъемы (слоты) подключаются к шине либо непосредственно, либо через специальные контроллеры (адаптеры).

Основная память предназначена для хранения и оперативного обмена информацией с прочими блоками компьютера и состоит из оперативно- запоминающего устройства (ОЗУ) и постоянно запоминающего устройства (ПЗУ)

Внешняя память используется для долговременного хранения информации, которая может быть в дальнейшем использована для решения задач.

Генератор тактовых импульсов генерирует последовательность электрических символов, частота которых задает тактовую частоту компьютера. Промежуток времени между соседними импульсами определяет такт работы машины.

Источник питания — это блок, содержащий системы автономного и сетевого питания компьютера.

Таймер — это внутримашинные электронные часы, обеспечивающие автоматический съем текущего момента времени. Таймер подключается к автономному источнику питания и при отключении компьютера от сети продолжает работать.

Внешние устройства компьютера обеспечивают взаимодействие компьютера с окружающей средой: пользователями, объектами управления и другими компьютерами.

Основными функциональными характеристиками персонального компьютера являются:

1) Производительность, быстродействие, тактовая частота.

Производительность современных ЭВМ измеряют обычно в миллионах операций в секунду.

2) Разрядностьмикропроцессора и кодовых шин интерфейса

Разрядность — это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция, в том числе и операция передачи информации; чем больше разрядность, тем, при прочих равных условиях, будет больше и производительность ПК.

3) Типы системного и локальных интерфейсов.

Разные типы интерфейсов обеспечивают разные скорости передачи информации между узлами машины, позволяют подключать разное количество внешних устройств и различные их виды.

4) Емкость оперативной памяти.

Емкость оперативной памяти измеряется обычно в Мбайтах. Многие современные прикладные программы с оперативной памятью, имеющей емкость меньше 16 Мбайт просто не работают либо работают, но очень медленно.

5) Емкость накопителя на жестких магнитных дисках (винчестера).

Емкость винчестера измеряется обычно в Гбайтах.

6) Тип и емкость накопителей на гибких магнитных дисках

Сейчас применяются накопители на гибких магнитных дисках, использующие дискеты диаметром 3,5 дюйма, имеющие стандартную емкость 1,44

7) Наличие, виды и емкость КЭШ-памяти

КЭШ-память — это буферная, недоступная для пользователя быстродействующая память, автоматически используемая компьютером для ускорения операции с информацией, хранящейся в более медленно действующих запоминающих устройствах. Наличие КЭШ-памяти емкостью 256 Кбайт увеличивает производительность персонального компьютера примерно на 20%.

8) Типвидеомонитора и видеоадаптера.

9) Наличие и тип принтера.

10) Наличие и тип накопителя на компакт дисках CD ROM.

11) Наличие и тип модема.

12) Наличие и виды мультимедийных аудио-видео средств.

13) Имеющееся программное обеспечение и вид операционной системы.

14) Аппаратная и программная совместимость с другими типами ЭВМ.

Аппаратная и программная совместимость с другими типами ЭВМ означает возможность использования на компьютере, соответственно, тех же технических элементов и программного обеспечения, что и на других типах машин.

15) Возможность работы в вычислительной сети.

16) Возможность работы в многозадачном режиме

Многозадачный режим позволяет выполнять вычисления одновременно по нескольким программам (многопрограммный режим) или для нескольких пользователей (многопользовательский режим).

Надежность — это способность системы выполнять полностью и правильно все заданные ей функции.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector