Не хватает мощности напряжения

Стабилизатор напряжения для стиральной машины: какой лучше выбрать, советы специалистов

Однако, в отличие от электромеханического управления, применявшегося в машинах образца 90-х годов, электроника современных стиральных агрегатов очень чувствительна к перепадам напряжения в сети 220В/230В. При перепадах напряжения возможны сбои в работе программатора, несрабатывание блокировки люка (срабатывание с 4–5 попытки), нестабильная работа сливного насоса, увеличение продолжительности стирки агрегатом.

При «просадке» напряжения в сети некоторые модели отключаются, особенно к ней чувствительна электронная начинка LG и Electrolux, не работающая при вольтаже менее 180 В. Работа машинки на экстремально низких значениях параметра не менее опасна, чем с перенапряжением. На низких оборотах двигатель перегревается, а в случае полной остановки перегорает от тока большой амплитуды в обмотках ротора или статора. При «зашкаливании» напряжения до 243–245 В электронный модуль управления большинства стиралок выходит из строя.


Автоматы

автомат электрический

Установка нового автомата в электрощиток позволит избежать плачевныхпоследствий не только для компьютера, но и для любой бытовой техники,так как старые устарели и отличаются низкой чувствительностью и быстродействием.

Как выбрать автомат?
Выбор автомата обуславливается номинальным током и производителем. Что касается последнего, то наиболее известны ABB и Legrand. Номинальный ток – это уровень тока, при котором сработает автомат и отключит питание в сети.

Посчитать номинальный ток можно по формуле: I=PU, где I – сила тока, P – мощность электроприбора, U – напряжение сети. Напряжение в нашей сети 220 Вольт, мощность, потребляемая электроприборами, обычно указывается в документации. Таким образом, сложив все мощности, потребляемые электроприборами и поделив это значение на 220, можно определить приблизительное значение тока.

Требования к сети переменного тока для нормальной работы компьютера.

Для нормальной работы компьютера, напряжение пи­тающей сети должно быть достаточно стабильным, а уровень помех в ней не должен превы­шать предельно допустимой величины. При подключении компьютера к сети переменного тока, от которой питаются устройства большой мощности, перепады на­пряжения, возникающие при включении и выключении этого оборудования, немедленно ска­зываются на его работе. При работе мощных агрегатов в сети могут возникать переходные про­цессы (всплески напряжения) амплитудой до 1000 В и выше, которые могут просто вывести из строя блок питания компьютера. Если для питания компьютера используется от­дельная линия, то и это не исключает появления в ней выбросов напряжения, поскольку это зави­сит от качества всей сети энергоснабжения здания или района. Выбирая место и способ подключения системы к сети, необходимо соблюдать следую­щие правила:

— подключение компьютеров осуществлять к отдельным линиям питания со своими предохранителями (желательно автоматическими);

— перед подключением необходимо проверить сопротивление шины заземления (оно должно быть низким);

— выходное на­пряжение линии должно находиться в допустимых пределах, и не должно быть помех и всплесков напряжения;

— подключение компьютера к сети должно производится с помощью трехштырьковых вилок, нельзя пользоваться переходниками для розеток с двумя гнездами, поскольку система при этом останется
без заземления;

— не пользуйтесь без крайней необходимо­сти удлинителями (выбирайте те из них, которые рассчитаны на подклю­чение мощных потребителей энергии) ведь уровень помех в сети возрастает при увеличении внутреннего сопротивления линии, т.е. чем длиннее соединительные провода и чем меньше их сечение, тем он выше;

— для подключения устройств, не имеющих отношения к компьютерам, лучше использовать другую розетку.

Холодильники, кондиционе­ры, кофеварки, копировальные аппараты, лазерные принтеры, обогреватели, пылесосы и мощные электроинструменты тоже отрицательно влияют на качество питающего компьютер напряжения. Любое из этих устройств, включенное в одну розетку с компьютером, может стать причиной его сбоя. Кроме того копировальные аппараты и лазерные принтеры потребляют слишком большую мощность, и их только из-за этого уже не стоит вклю­чать в одну розетку с компьютером. Нельзя, чтобы вся электросеть офиса представляла со­бой последовательную цепочку проводов и розеток, в этом случае, качество напряжения для компьютеров, подключенных к последним розеткам в этой цепи оставляет желать лучшего.

В компьютерах может эпизодически возникать ошибка контроля на четность с произвольными неповторяющимися адресами, что обычно сви­детельствует о неприятностях в цепях электропитания. Например, ошибка четности возникала каждый раз, когда рядом включали копировальный аппарат, и она перестала появляться сразу же, как только компьютер подключили к отдельной линии.

Радиочастотные помехи возникают в том случае, если поблизости расположен мощный источник радиоизлучения, но и радиоизлучение гораздо меньшей мощности может сказываться на работе компьютера (работа радиотелефона, мобильного телефона). Бороться с такими явлениями сложно, иногда удается избавиться от помех, просто развернув компьютер, поскольку степень воздействия радиосигнала на компьютер зависит от его ориентации. Иногда, например, для устойчивой работы кла­виатуры помогает использование экранированного кабеля для ее подключения. Хороший эффект подавления помех может быть получен если пропустить соединительный кабель через ферритовое кольцо (по­давляются как внешние помехи, воздействующие на систему, так и ее собственное электро­магнитное излучение). Радикально решить проблему, связанную с помехами, можно, только устранив их источ­ник.

Если компьютер предполагается эксплуатиро­вать в неблагоприятных условиях, то стоит подумать о покупке системы, разрабо­танной специально для этого (такие компьютеры стоят значительно дороже, но они надежно защищены). Для таких компьютеров существуют и специальные клавиатуры, защищенные от попадания в них влаги и грязи. Одни из них представляют собой плоские панели с клавишами мембран­ного типа. Набирать на них довольно трудно, поскольку приходится сильно нажимать на кла­виши. Другие похожи на обычные, но все клавиши на них закрыты тонким пластмассовым чехлом-крышкой. Таким чехлом можно закрыть и стандартную клавиатуру, чтобы защитить ее от пыли и грязи.

Даже самые надеж­ные современ­ные отказоустойчивые серверы или дисковые массивы RAID не могут функциони­ровать без надежного электропитания. Если ваше оборудование не снабжено автономными носителями энер­гии, перебои в работе используе­мых источников питания могут приводить к остановке системы. Молния вероятно может ударить где-нибудь поблизости от вашего зда­ния, вызывая броски напряже­ния, обрушивающие тысячи дополнительных вольт на ваши силовые и телефонные линии. Проблемы с электропитанием могут повреждать компьютеры и портить данные. Современная техника представляет достаточно много способов решения этих проблем, некоторые из них основываются на обыкновенном понимании того, как электропитание устроено, и опыте эксплуатации компьютерных систем.

Проблемы электропитания импортного оборудования компьютерных систем ощущается особенно остро так как обеспечение нормальным питанием рассматривается, естественно, с позиций того окружения, в котором работает пользователь зарубежный. Но в российских электросетях более высокое напряжение питания 220 В (колеблется в пределах 210 — 230 В), иная частота сети — 50 Гц против 60 Гц. Такое отличие частот может вызвать повышенную нагрузку на трансформаторы блоков питания. Большой проблемой является для нас небрежный, а часто и неквалифицированный монтаж сети. Только сравнительно недавно электропроводку стали выполнять трехжильным проводом, в котором кроме нейтрали и фазы присутствует еще и земля (куда эта земля будет подключена это отдельный вопрос). Доступность трехфазных электропроводок облегчает решение вопроса предельно допустимой нагрузки на сеть, но порождает ряд других проблем иного рода. Случается, что из-за низкой квалификации, самоуверенности и торопливос­ти при монтаже, разные розетки в одной комнате подклю­чаются к разным фазам, напряжение между которыми составляет 380 В. При небрежном заземлении, которое осуществляется порой в разных точках, могут возникнуть опасные ситуации, поэтому в наших условиях проблему энергоснабжения обычно приходится начинать не с выбора ис­точника бесперебойного питания (ИБП), а с перепланировки силовой электросети. К серьезнейшим недостаткам нашей электросети следует отнести даже не сбои в питании, а импульсы и перенапряжение. Даже для современных устройств с автоматической настройкой на напряжение сети значительно повышенное питание может привести к выходу их из строя. В этой связи при выборе устройства ИБП необходимо поинтересоваться и тем, как оно справляется с повышенным напряжением и с высоковольтными импульсами.

Проблемы с электропитанием можно подразделить на две основные группы: проблемы, ведущие к по­вреждениям оборудования, и про­блемы, вызывающие поврежде­ние данных или приводящие к некорректной работе. Любое напряжение выше 230 В является повышен­ным, любое напряжение ниже 205 В — пониженным. Повышен­ное напряжение может привести к выходу из строя источников пи­тания компьютеров и другого обо­рудования. Электромоторы пере­греваются при пониженном напряжении. Для микрокомпью­теров обычно используют источ­ники питания с автонастройкой, которые, к счастью, устойчивы к пониженному напряжению.

Аномалия в элек­тропитании, которая особенно опасна для компьютеров и элек­троники вообще — это импульс, извест­ный также как крат­ковременное повы­шение, выброс или колебание напряже­ния.

Импульс — это очень короткое повышение на­пряжения, причиной которого мо­жет служить удар молнии в сило­вую линию, включение опреде­ленного типа силовых устройств либо управление двигателем пе­ременной скорости. Типичный импульс, величина которого мо­жет составлять от нескольких со­тен до нескольких тысяч вольт, вызывает серьезное нарушение в работе сети переменного тока, но только на несколько микросекунд.

Отключение энергии — про­блема, требующая наиболее при­стального внимания. Не заметить полную потерю питания дейст­вительно довольно сложно. Кратковременное отключение энергии — длящееся лишь от по­лупериода до пары периодов волны — часто называют выпа­дением питания.

Радиочастотная интерферен­ция ведет к возникновению элект­рошума, который накладывается на предполагаемо чистую, сину­соидальную волну при частоте 50 Гц. И если этому шуму удастся пройти через блок питания в пи­тающую шину компьютера, компьютер может ошибочно ин­терпретировать его как данные.

Когда отдельный компьютер или сеть компьютеров заземляют в нескольких точках, образуются нежелательные контуры заземления. Предпола­гается, что монтаж разводки пи­тания в доме или офисе заземля­ется через одну точку — вход питания (другими словами, через главную распределительную па­нель, по которой электроэнергия подводится к зданию). Если мон­таж сети переменного тока в зда­нии выполнен так, что заземление осуществляется в двух или боль­шем числе точек, то формируется замкнутая цепь, позволяющая то­кам циркулировать через зазем­ление. Проблема токов в земле возникает потому, что все провода обладают различным со­противлением, и токи, циркули­рующие в цепи, вызывают раз­личное падение напряжения в заземленных проводах. И это не­смотря на то, что все они, как предполагается, имеют нулевой потенциал. Различие напряжений может вызвать все что угодно, на­чиная от биений с тактовой часто­той 50 Гц до высокочастотных шу­мов, которые могут вести к неправильной интерпретации данных компьютером.

Существует несколько путей борьбы с проблемами электропи­тания. Первым шагом должна быть корректная оценка исходной ситуации, в которой вы на­ходитесь. Сначала надо удостовериться в правильном подведении проводки ко всем электрическим выходам (в США, напри­мер, правильное подсоединение цепи переменного тока с напря­жением 120 В обеспечивается трехпроводной розеткой, в кото­рой нейтраль — слева, фаза — справа, отверстие снизу — земля, если смотреть на розетку, установленную в стене). Обычные ошибки в подключе­нии проводки проявляются в том, что оказываются перепутаны фаза с нейтралью или заземление с ней­тралью. Некоторые фирмы изготавливают системы мо­ниторинга сети переменного то­ка, вставляющиеся в розетки. Некоторые из этих устройств даже снабжены самописцами, отмеча­ющими на бумаге происходящие скачки и другие аномалии напря­жения. Имеются также системы мониторинга, представляющие собой стационарные устройства, сохраняющие полученные дан­ные в памяти. Большинство силовых систем мониторинга — это самостоя­тельные устройства, которые по­просту подключаются к силовой розетке и измеряют напряжение. Такие устройства можно исполь­зовать без риска быть поражен­ным током. То же самое относит­ся и к тестерам полярности про­водов. Не следует пытать­ся протестировать розетку или распределительную панель руч­ным вольтметром до тех пор, по­ка вы точно не будете знать, что вы делаете. При измерении напряжения необходимо установить многие парамегры. Какова его поляр­ность? Постоянно ли напряжение или изменяется во времени? От­клоняется ли оно от номинально­го? Особенно пристальное внима­ние надо обратить на напряжение в точке использования — розетке, в которую подключен компьютер, а следовательно, проследить пра­вильность подсоединения концов ветвей контура, питающих наиболее важные системы. С целью ди­агностики может оказаться по­лезным измерить напряжение на входе питания.

Если на входе напряжение па­дает ниже допустимых пределов, следует обратиться в обслужива­ющую вас электрослужбу. В большинстве энергетических компаний имеются подразделе­ния, которые тщательно рассмот­рят эту проблему. Выясните, ка­ковы предельные значения напряжения, которое вам будет поставляться. Если входное напряжение (в розетке) отклоняется от номи­нального — оказывается значи­тельно ниже допустимого уров­ня либо заметно падает при подключении емких потребите­лей энергии — это может озна­чать неадекватность вашей про­водной системы или то, что вы подключаете в один контур слишком много потребителей энергии. Чтобы исправить такое положение вещей, попросите своего электрика проверить монтажные схемы электропро­водки, а также просуммируйте всю нагрузку на цепь, чтобы оценить, насколько она соответ­ствует означенным параметрам. В случае перегрузки цепи мож­но перераспределить несколько потребителей энергии на другие контуры питания, модернизиро­вать контур, заменив провода на провода большего сечения или добавить новый контур для час­ти потребителей.

Можно установить питающий контур, который снаб­жает энергией только ком­пьютеры и никакое другое электро­оборудование. Это потребует прокладки пары проводов и за­земления электрического выхода от главной распределительной панели до компьютеров. При таком соединении вы избавлены от па­дения напряжения при включе­нии других типов потребителей, по­скольку их в этом контуре попросту нет.

Обычно, чтобы защититься от бросков напряжения, используют про­ходной фильтр (импульсный подави­тель — transient suppressor). «Активной составляющей» им­пульсного подавителя обычно служит металло-оксидный варистор, являющийся нели­нейным резистором. Металло-оксидный варистор подсо­единяется как шунт между фазой и нейтралью и обладает очень высоким сопротивлением, пока напряже­ние остается ниже некоторого порогового значения, например 280 В. Однако, если напряжение превышает это значение, то сопротивление варистора резко падает и он передает импульс на нейтраль. Еще один тип импульсных пода­вителей — это активный элек­тронный контур, блокирующий цепь от воздействия импульсов.

Радиочастотные фильт­ры (RFI), сделанные из катушек индук­тивности и конденсаторов, прово­дят радиочастоты ниже опре­деленного значения (например, 1 КГц) и сглаживают сигналы вы­ше этой частоты. Частота постав­ляемого промышленно напряже­ния (50 Гц) значительно ниже отсекае­мой частоты, поэтому она переда­ется прямо через фильтр, между тем как радиочастотное колеба­ние, которое обычно меняется в пределах от килогерц до мега­герц, блокируется.

В зависимости от конструктив­ного исполнения, импульсные по­давители и радиочастотные филь­тры могут не отсекать синхронные импульсы или синхронные радио­сигналы. Синхронные сигналы — это сигналы, которые достигают фазы и нейтрали одновременно. Устройством, которое может использоваться для фильтрации синхронных сигналов, является трансформатор. В трансформаторе, в зависимости от тока, текущего в первичной обмот­ке и образующего магнитное поле, индуцируется напряжение во вто­ричной обмотке. Синхронные же импульсы, возникающие в первич­ной обмотке, не вызывают в ней то­ка, поэтому на вторичной обмотке напряжение не индуцируется. Несмотря на то, что синхрон­ные сигналы не пропускаются трансформатором индуктивно, они могут частично проходить че­рез трансформатор из-за наличия емкостных связей. В большинстве трансформаторов первичная и вторичная обмотки причиняют неприятности друг другу, нахо­дясь одна над другой. Изоляция обмоток делает работу трансфор­матора более эффективной. Одна­ко физическая изоляция двух обмоток делает возможным емкостное пропускание синхронных сигналов с первичной на вто­ричную обмотку и наоборот. Трансформаторы с изоляцией снабжены электростатической защитной оболочкой (обычно это лист тяжелой медной фольги), расположенной непосредственно между двумя обмотками или между обмоткой и железной сердцевиной. Чтобы обеспечить отвод высокочастотной составля­ющей, защитная оболочка зазем­ляется; это делается вместо за­мыкания на другую обмотку.

Существуют и иные силовые защитные приспособления, изве­стные как регуляторы мощности или линейные регуляторы. Регу­ляторы мощности часто содер­жат изолированные трансформа­торы; многие из них включают в себя импульсные подавители и радиочастотные фильтры. Неко­торые регуляторы снабжены многопозиционными трансфор­маторами, способными посредст­вом переключателей настраи­вать выходное напряжение.

Напряжение в частном доме 160 — 180 вольт. Что делать?

Напряжение в частном доме 160 - 180 вольт. Что делать?

Низкое напряжение в сети – это проблема, характерная для домохозяйств в частном секторе. 160-180 вольт – такого напряжения недостаточно для работы большинства бытовых электроприборов и светильников. Даже простейшая лампа накаливания при чрезмерно низком напряжении уже не светит, а просто «обозначает» свою нить накаливания нежно-малиновым цветом.

Прежде всего, следует помнить, что поставщик электроэнергии обязан обеспечить качество этой электроэнергии на вводе, то есть, на границе ответственности между абонентом и поставщиком. По факту наиболее часто граница ответственности располагается в точке подключения ответвления ВЛ к частному дому.

Поэтому принципиальное значение имеет вопрос: в пределах чьей зоны ответственности имеется проблема? Если на самой ВЛ напряжение такое же низкое, то отвечает за это энергоснабжающая организация (правление садоводства, «Энергосбыт» и т. д.) Но если там напряжение в порядке, то проблемным участком является ввод, а это уже находится на совести потребителя.

Произвести измерения на опоре ВЛ в точке подключения ответвления практически совсем не просто, да и небезопасно. Производить такие работы могут только квалифицированные сотрудники организации-поставщика электроэнергии.

Например, если проблемы с напряжением имеются только у вас, а соседи, подключенные к вашей же фазе, никаких неудобств не испытывают, то это достаточно ясно указывает на то, что техническая проблема находится именно на вашем ответвлении.

Еще одним характерным признаком проблем именно на вашем вводе может быть отсутствие просадки до включения каких либо электроприборов в именно в вашем доме. То есть, если выключен вводной аппарат – напряжение на вводе полноценное, а если работают одновременно плита, чайник и пылесос, то работать они уже практически не могут, так как просадка очевидна и заметна даже без использования специальных приборов.

Просадка напряжения в пределах границы ответственности домовладельца

Если просадка напряжения происходит именно на вашем ответвлении, то вероятны такие варианты:

1. Сечение вводного проводника недостаточно при имеющейся длине. На слишком тонких проводниках происходит падение напряжения, которое в случае предельной нагрузки может быть весьма значительным.

2. В цепи ответвления имеется плохой контакт, который играет роль дополнительного сопротивления. На этом сопротивлении в соответствии с законом Ома происходит падение напряжения. Этих-то вольтов, «пропадающих» на плохом контакте, может и не хватать.

Потерянные вольты становятся причиной выделения тепла. В первом варианте это не так уж и критично, поскольку вводной проводник греется по всей длине равномерно. А вот при наличии второго варианта плохой контакт будет греться. И весьма интенсивно, вплоть до того, что место нагрева будет видно невооруженным глазом. Нагрев будет способствовать дальнейшему ухудшению контакта, а итогом станет либо полная неработоспособность ввода, либо, в худшем случае, пожар.

Если вы выяснили, что падение напряжения в доме вызвано проблемами в вашем ответвлении ЛЭП, то следует предпринять следующие действия:

1. Критически оценить состояние контактов. Это, в первую очередь, касается места соединения магистральной ЛЭП и вашего ответвления. Как выполнено это соединение? Если при помощи обыкновенной скрутки, то весьма вероятно, что здесь и кроется проблема: переходное сопротивление такого контакта, расположенного под открытым небом, растет неуклонно, а от возгорания спасают только практически идеальные условия охлаждения. Особенно все это актуально в том случае, если скруткой соединяются алюминиевый магистральный и медный ответвительный проводники. К сожалению, такое тоже бывает.

Если же ответвление выполнено при помощи сертифицированных зажимов, то необходимо обратить внимание на состояние корпусов этих зажимов. Оплавление и другие повреждения корпуса зажима могут свидетельствовать о проблемах с электрическим контактом. Убедиться в наличии этих проблем можно, включив в сети предельную нагрузку (как можно больше электроприемников) и произведя нехитрые наблюдения. Если внутри зажима происходит искрение, испускается дым и явно повышается температура, то зажим одназначно является причиной просадки напряжения и подлежит замене.

2. Еще одним местом проблемного контакта могут стать верхние зажимы вводного коммутационного аппарата (чаще всего автомата). В этом случае искрение может исходить прямо из вводного щита, а корпус автоматического выключателя будет иметь признаки оплавления. Тогда вводной аппарат необходимо заменить.

Просадка напряжения в пределах границы ответственности энергосбытовой компании

На первый взгляд, кажется, что этот случай простейший: скооперировались с соседями, написали жалобу – и пожалуйста. Поставщик обязан обеспечить качество поставляемой электроэнергии по закону.

Однако по факту все гораздо сложнее. Пониженное напряжение в сети ЛЭП может быть связано с такими обстоятельствами:

1. перегрузка трансформатора подстанции,

2. недостаточность сечения проводников ЛЭП,

3. «перекос», то есть неравномерная загрузка фаз трансформатора.

Первые две причины нетрудно диагностировать, да непросто устранить: требуется либо замена трансформатора, либо реконструкция ЛЭП. К тому же нагрузка в сети не отличается стабильностью, а значит, и с третьей причиной тоже не все однозначно. Здесь следует отметить, что сегодня на большинстве подстанций исправно работает релейная защита. А это значит, что просадка напряжения из-за банальной перегрузки характерна лишь для некоторых садоводств и глухих поселений.

Обоснование того, что мощность трансформатора недостаточна, или что нагрузка по фазам распределена неравномерно, будет практически невозможно найти. Сейчас имеется перегрузка или перекос, а через полчаса его уже может не быть. Соответственно, и просадка напряжения тоже носит нестабильный характер, а потребители остаются один на один со своей проблемой.

Писать «бумагу» в адрес энергосбытовцев в подобной ситуации, конечно, надо. Но предпринимать какие-то шаги самостоятельно все равно придется. Как вариант – в подобном случае можно добиться разрешения от сбытовой компании и завести в дом все три фазы. Далее можно установить на вводе автоматический переключатель фаз и всегда пользоваться только наименее загруженной в текущий момент фазой, напряжение в которой будет близко к 220 вольт.

При отсутствии такого разрешения от Энергосбыта можно производить периодическую «смену фазы» при участии электриков эксплуатирующей организации, которые обеспечат необходимое отключение на подстанции. Но надо отметить, что такие действия едва ли радикально решат вопрос.

Недостаточность сечения проводников ЛЭП относительно часто становится причиной просадки напряжения, причем не только в садовоствах, но и в частном секторе в черте города. Дело в том, что пару десятков лет назад эти линии выполнялись самыми дешевыми проводами. Наиболее распространенными были сталеалюминиевые провода АС сечением 16 кв. мм. Сталь обеспечивает этому проводу повышенные несущие способности, но существенно снижает проводимость. И это при том, что сечение 16 кв. мм. итак не особенно велико, а сам алюминий не отличается высокой проводимостью.

На том историческом этапе, когда даже электрическая плита имелась не в каждом частном доме, а других мощных электроприемников дома вообще не держали, ЛЭП из проводов АС-16 было вполне достаточно. А сегодня на месте прежних маленьких домиков возводятся целые дворцы. Причем все чаще отдается предпочтение электрическому бойлерному отоплению. Разумеется, потребление электроэнергии возрастает в разы. И даже если трансформатор на подстанции справляется, или его заменили, то на тонких проводах при больших токах происходит значительное падение напряжения.

Характерным признаком недостаточности сечения проводов ЛЭП или мощности трансформатора подстанции является нормальное напряжение ночью и неизменная просадка в вечернее время. Но стоит заметить, что эти две проблемы зачастую «ходят рука об руку».

Где слабые провода ЛЭП – там и маломощный трансформатор. А устранить проблемы мешает необходимость больших капиталовложений. Один трансформатор стоит около миллиона рублей, в зависимости от его мощности. Вдобавок реконструкция ЛЭП с использованием СИП тоже «встанет в копеечку».

Вот по этим причинам энергосбытовые компании, администрации садоводств и поселков могут хранить молчание годами даже при наличии явных проблем.

Известны такие способы частного решения проблемы низкого напряжения в сети:

1. Установка на свой ввод стабилизатора напряжения. Если честно, эта мера в случае просадки до 160-180 вольт сомнительна. Во-первых, стабилизатор такой глубокой стабилизации и подходящей для домовладения мощности будет стоить очень дорого. А во-вторых – десяток таких стабилизаторов в сети ЛЭП – и сеть буквально падает на колени, откуда ее уже не поднять никаким стабилизатором.

2. Установка повышающих трансформаторов напряжения на вводе. Это тоже совсем не подходит. Положим, поставили мы трансформатор, подобрав коэффициент трансформации со 160 до 220 вольт. А утром напряжение в сети пришло в норму, и вместо 220 в розетках стало 300 вольт. Сгорают все приборы и лампочки. Ведь проблема с просадкой напряжения состоит и в том, что просадка эта почти никогда не бывает стабильной.

3. Установка дополнительного заземляющего устройства на вводе. Разумеется, на нулевой рабочий проводник. Смысл здесь в том, что линия ЛЭП – это прямой проводник (фаза) и обратный (ноль). Сечение может быть недостаточным у обоих, но, заземлив нулевой проводник, можно уменьшить сопротивление рабочего нуля и в целом сопротивление линии тоже понизится. Однако такая мера тоже чревата. Прежде всего, тем, что во время ремонта на любой точке линии электрики могут попутать местами ноль и фазу.

В подобном случае заземленная фаза станет причиной короткого замыкания. Другой вариант – обрыв рабочего нуля на ЛЭП. Тогда все рабочие токи пойдут через ваше заземляющее устройство, что может привести к труднопредсказуемым результатам. В лучшем случае заземляющее устройство просто выйдет из строя.

По итогу придется признать, что не существует самостоятельного радикального решения проблемы просадки напряжения из-за слабого трансформатора подстанции или слишком тонких проводов ЛЭП. Один в поле – не воин. Необходимо объединяться с соседями, составлять обращение в адрес энергосбытовой организации и быть готовым к тому, что часть расходов придется брать на себя. Иначе дело может затянуться до бесконечности.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector