Минимальное напряжение блока питания компьютера при полной нагрузке

Как выбрать
блок питания компьютера

Блок питания (БП) – обязательная составная часть любого компьютера, обеспечивающая электроэнергией все его устройства.

Собирая компьютер, блок питания можно приобрести отдельно, или же вместе с корпусом системного блока (когда БП продается как его часть). Последний вариант выгоден в денежном плане, но подходит только для офисных и других маломощных компьютеров. Для игровых же машин и компьютеров, предназначенных для серьезной работы, блок питания лучше покупать отдельно, уделив достаточное внимание его соответствию требованиям видеокарты, процессора и других внутренних устройств.

О том, какие характеристики блока питания необходимо учитывать при его выборе, и пойдет речь в статье.

Минимальное напряжение блока питания компьютера при полной нагрузке

Так как в тренде сейчас максимальное удешевление при производстве – то некачественный товар быстро доходит до дверей ремонтника. При покупки компьютера (особенно первого) – многие выбирают корпус «самый красивый из дешёвых» со встроенным БП – а многие даже не знают, что там есть такое устройство. Этот «скрытый девайс» на котором очень хорошо экономят продавцы. Но платить за проблемы будет покупатель.

О главном

Сегодня мы затронем тему ремонта компьютерных блоков питания, а точнее их первичной диагностики.Если есть проблемный или подозрительный БП – то диагностику желательно проводить отдельно от компьютера (на всякий случай). И поможет нам в этом вот такой агрегат:

2646702677.jpg

Блок состоит из нагрузок на линиях +3.3, +5, +12, +5vSB (дежурное питание). Он нужен для имитирования компьютерной нагрузки и измерения выходных напряжений. Так как без нагрузки БП может показать нормальные результаты – а в нагрузке могут проявляться многие проблемы.

Подготовительная теория

Грузить будем чем попало (что найдете в хозяйстве) – мощные резисторы и лампы.

3970302203.jpg

У меня валялись 2 автомобильные лампы 12V 55W/50W – две спирали (дальний/ближний свет). Одна спираль испорчена – будем использовать вторую. Покупать их не нужно – спросите у знакомых автомобилистов.

Конечно лампы накаливания имеют очень низкое сопротивление в холодном состоянии – и при запуске будут создавать большую нагрузку на короткое время – а это могут не выдержать дешевые китайцы – и не стартовать. Но плюс ламп — это доступность. Если достану мощные резисторы – поставлю вместо ламп.

Резисторы можно искать в старых приборах (ламповые телевизоры, радиолы) с сопротивлением(1-15 Ом).

Можно также использовать нихромовую спираль. Мультиметром подбираем длину с нужным сопротивлением.

Загружать будем не по полной а то 450W в воздух получится обогреватель. А ватт на 150 будет нормально. Если практика покажет что нужно больше – добавим. Кстати это примерное потребление офисного ПК. А лишние ваты рассчитаны по линиям +3.3 и +5 вольт – которые мало используются – примерно по 5 ампер. А на этикетке жирно написано по 30А –а это 200ватт которые ПК не может использовать. А по линии +12 часто не хватает.

Для нагрузки у меня в наличии:

  • 3шт резисторы 8.2ом 7,5w
  • 3шт резисторы 5.1ом 7,5w
  • резистор 8.2ом 5w
  • лампы 12в: 55w, 55w, 45w, 21w

Для расчётов будем использовать формулы в очень удобном виде (у меня висит на стене – всем рекомендую)

2527101180.jpg

Итак выбираем нагрузку:

— линия +3.3В – используется в основном для питания оперативной памяти – примерно 5ватт на планку. Будем грузить на ~10ватт. Вычисляем нужное сопротивление резистора

R=V 2 /P=3.3 2 /10=1.1 Ом таких у нас нет, минимальный 5.1ом. Вычисляем сколько он будет потреблять P=V 2 /R=3.3 2 /5.1=2.1W–мало, можно поставить 3 параллельно – но получим всего 6W на троих–не самое удачное использование таких мощных резисторов (на 25%) – да и место займут большое. Я пока не ставлю ничего – буду искать на 1-2 Ома.

— линия +5В–мало используется в наши дни. Смотрел тесты – в среднем кушает 5А.

Будем грузить на ~20ватт. R=V 2 /P=5 2 /20=1.25 Ом — тоже малое сопротивление, НО у нас уже 5 вольт – да еще и в квадрате – получим намного большую нагрузку на те же 5-ти омные резисторы. P=V 2 /R=5 2 /5.1=4.9W – поставим 3 и будет у нас15W. Можно добавить 2-3 на 8ом (будут потреблять по 3W), а можно и так оставить.

— линия +12В – самая востребованная. Тут и процессор, и видеокарта, и некоторые малоежки (кулеры, накопители, ДВД).

Будем грузить на целых 155ватт. Но раздельно: 55 на разъём питания материнской платы, и 55 (+45 через переключатель) на разъём питания процессора.Будем использовать автомобильные лампы.

— линия +5VSB – дежурное питание.

Будем грузить на ~5ватт. Есть резистор 8.2ом 5w, пробуем его.

Вычисляем мощностьP=V 2 /R=5 2 /8.2=3Wну и хватит.

— линия -12В – тут подключим вентилятор.

Фишки

Еще в корпус добавим малогабаритную лампу 220В 60W в разрыв сети 220В. При ремонте часто используется для выявления КЗ (после замены каких-то деталей).

Собираем девайс

По иронии судьбы – корпус будем использовать тоже от компьютерного БП (нерабочего).

Гнёзда для разъёма питания материнки и процессора выпаиваем с неисправной материнки. К ним припаиваем кабеля. Цвета желательно выбрать как на разъёмы от БП.

1261420229.jpg

Готовим резисторы, лампы, лед-индикаторы, переключатели и разъём для измерений.

Подключаем все по схеме .. точнее по VIP-схеме 🙂

81015588.jpg

Крутим, сверлим, паяем – и готово:

2646702677.jpg

По виду должно быть все понятно.

Бонус

Изначально не планировал, но для удобства решил добавить и вольтметр. Это сделает прибор более автономным – хотя при ремонте мультиметр все равно где-то рядом лежит. Смотрел на дешевые 2-ух проводные (которые питаются от измеряемого напряжения) – 3-30 В – как раз нужный диапазон. Просто подключив к разъёму для измерений. Но у меня был 4,5-30 В и я решил поставитьуже 3-х проводной0-100 В – и питать его от зарядки мобильного телефона (тоже в корпус добавил). Так он будет независим и покажет напряжения от нуля.

Этот вольтметр также можно использовать для измерения внешних источников (батарейку или еще чего . )– подключив к измерительному разъёму (если мультиметр где-то пропал).

Фейс-контроль

3843734701.jpg

Пару слов о переключателях.

S1– выбираем способ подключения: через лампу 220В (Выкл) или напрямую (Вкл). При первом запуске и после каждой пайки – проверяем через лампу.

S2 – подается питание 220В на БП. Должно заработать дежурное питание и загореться LED +5VSB.

S3 – замыкается PS-ON на землю, должен запустится БП.

S4 – добавка 50W на линии процессора. (50 там уже есть, будет 100W нагрузки)

SW1 – Переключателем выбираем линию питания и проверяем по очереди если все напряжения в норме.

Так как измерения у нас показывает встроенный вольтметр,то в разъёмы можно подключить осциллограф для более глубокого анализа.

Кстати

Пару месяцев назад купил около 25 БП (у закрывающиеся конторы по ремонту ПК). Половина рабочие, 250-450 ватт. Покупал как подопытных кроликов для изучения и попытки ремонта. Блок нагрузки как раз для них.

Вот и всё. Надеюсь было интересно и полезно. Я пошел тестировать свои БП и вам желаю удачи !


Допуски напряжения питания (ATX v2.2)

Таблица допусков блока питания
Номинальное напряжение Допуск в процентах Минимальное напряжение Максимальное напряжение
+ 3,3 В ± 5% +3,135 В +3,465 В
+ 5VDC ± 5% +4,750 В +5,250 В
+ 5VSB ± 5% +4,750 В +5,250 В
-5VDC (если используется) ± 10% -4,500 В -5,500 В
+ 12VDC ± 5% +11.400 В +12.600 В
-12VDC ± 10% -10.800 В — 13.200 В

Хорошая задержка питания (PG Delay) — это время, которое требуется блоку питания для полного запуска и подачи правильного напряжения на подключенные устройства.

В соответствии с Руководством по проектированию блоков питания для форм-факторов настольной платформы, задержка исправности питания, называемая задержкой PWR_OK в связанном документе, должна составлять от 100 мс до 500 мс.

Power Good Delay также иногда называют PG Delay или PWR_OK Delay

Схема устройства блока питания разъемов и распиновки разъемов

Чтобы узнать, какой блок питания нужен вашему компьютеру, нужно понимать его устройство, а главное распиновку и назначения разъемов кабелей. Прежде всего привожу схему:

Разъемы блока питания компьютера

распиновка блока питания компьютера

Основным и самым большим разъемом является питание материнской платы. В зависимости от ее модели, плата питается разными типами коннекторов с различным количеством контактов. Как правило, современные платы имеют разъем 24pin. Однако более старые могут иметь 20-пиновый разъем, соответственно чаще всего блоки питания имеют вилку с разделенными 20+4 pin, чтобы иметь возможность подключать как старые, так и новые модели. Если же эта вилка на БП сделана монолитно, то подключить к старой плате c его уже не получится, так как у него другая распиновка от блока питания компьютера.

20 + 4 pin

Стоит также обратить внимания на распиновку провода для питания процессора. Мощные современные процессоры часто имеют 8-ми пиновый разъем питания. На БП же может иметься как разделенный 8ми контактный (4+4, как на рисунке ниже), так и только 4-pin для более старых плат. В этом нет ничего страшного, если вы подключаете стары БП к новой плате, то для большинства повседневных задач на не самом мощном процессоре хватит и такого небольшого разъема, поэтому его можно смело цеплять к восьмипиновому на системной плате.

cpu 8 pin

Для работы с современными комлектующими желательно иметь побольше разъемов питания SATA, а также Molex для подключения более старых жестких дисков и приводов, работающих с системной платой через шину IDE.

Разъемы для подключения комплектующих

Для подключения видеокарт используется специальный разъем питания PCI-E, имеющий обычно 6+2 пин для старых карт с 6 контактами для старых и 8 для новых. На мощных современных видюхах требуется 2 коннектора по 8 контактов, поэтому при установке двух таких карт — понадобится аж 8 подобных вилок.

При нехватке какого-либо типа разъемов можно использовать многочисленные переходники.

Переходники для БП

Объявления

maverick5334

@E_C_C Fuse прямые. В софте TL866 вроде и нет инверсных, да и CodeVisionAVR тоже. Скрин фюзов с TL866 я выше привёл. Старший фьюз должен быть 0х99 а младший 0х04 — фюзы всегда были у меня ахиллесовой пятой, я в них дуб дерево хвойное, и эти цифры мне ни о чем не говорят. Сейчас всё работает, а фюзы которые установил я содрал с другого проекта, добавив только EESAVE. Рабочий вариант с CodeVisionAVR вот ниже. Допиливания хотелось бы, при смене времени нужно листать все таймера по дням недели, это не проблема, просто неудобство. Принудительное включение — в моём старом таймере при зажимании кнопки + и удержании её около 3сек реле включает принудительно и далее таймер работает в штатном режиме. то есть если мне вдруг понадобилось включить реле вот прям счас (в НЕ заданное время), я это сделать могу (на старом таймере) и далее реле работает пока не наступит время отключения.

andrusha152

grach

@ВасяШпунт Вообщем по настройке, вот схема с цветными овальчиками: 1. Включаешь шмелёва и генератор. ГРОМКОСТЬ В КОМПЕ И НА УСИЛЕ БОЛЬШЕ НЕ ТРОГАЙ. Смысл получить не какое то определённое значение циферок, а минимальное из возможного. То есть нижеописанные манипуляции должны приводить к уменьшению значений THD. 2. крутишь резистор в красном овале R4, смотришь в этом окне на изменения цифорок Уменьшается — хорошо, начнет увеличиваться — хватит крутить. Напряжение в точке 2 относительно земли не превышай 100 В. 3. После крутишь R12 и смотришь изменения циферок. Уменьшается — хорошо, начнет увеличиваться — хватит крутить. После выключаешь усилитель, от ламповой панельки отпаиваешь R10 R11 и измеряешь сопротивление в точках 3 и 4. После последовательно соединяешь необходимые резисторы, чтобы получить ранее измеряемые значения (до 100% точности подбирать не обязательно) Припаиваешь получившиеся резюки обратно. Сразу скажу, R10 R11 буду скорее всего разные. 4. R18 — тоже подбираешь номинал по минимальному значению циферек. Номиналы скорее всего будут в диапазоне от15К до 25К. 5. Последним крутишь R6, пока в этом окне синусоида не начнет увеличиваться и обрезаться Может получится, что не обрезается. Тогда выставляешь на компе и усилке МАКС громкости и крутишь R6. Нужно получить максимальную необрезанную синусоиду на максимальной громкости. Как то так. ХЗ что ещё подсказать. Вобщем крути, смотри, процесс не быстрый. После расскажешь, что получилось.

E_C_C

Замечания хорошие, когда нибудь я допилю этот проект до большего функционала. Но это не точно ;-). Кстати со временем проявляется ещё один недостаток — пару раз в году сбивалось время или календарь. Связано это, скорее всего, с неудачной разводкой платы , нужно делать сплошной земляной полигон под 1307. Да и керамики по питанию добавить неплохо. Заметил , что сбоили управляющие через пускатель мощной нагрузкой . В то же время на экземпляре ничем не управляющим , а просто работающим в режиме часов , сбоев не наблюдается.

Я конечно извиняюсь, но почему транзистору КТ608 в открытом состоянии нужен радиатор? Напряжение коллектор — эмиттер порядка 1 вольта и ток 0.2 ампера, мощность на транзисторе всего 0.2 ватта. По идее транзистор греться не должен. Конечно мосфет предпочтительней, у него падение напряжения на переходе милливольты, даже IRLML2502TR подойдет. 415N0904215.pdf

Итоги и дальнейшие пути усовершенствования

На текущий момент использованная методика и стенд позволяют с хорошей точностью определить основные нагрузочные возможности, уровень пульсаций и соответствие допускам стандарта по всем основным питающим каналам блока питания. Однако всегда есть возможность внести улучшения, поэтому в скором времени планируется реализация блока для автоматического замера эффективности преобразования (КПД) блока питания, замеры фактора мощности, оптические датчики для замеров скорости вращения вентиляторов блока и температурные измерения в условиях, приближенных к реальным средам использования. Данная статья будет периодически обновляться, с учетом вносимых изменений. Также все пожелания и дополнения читателей будут внимательно рассмотрены и приняты во внимание.

Версия 1.01b от 2.02.2008. Начальная версия.

Использованные материалы и ссылки:

  • ATX12V Power Supply Design Guide, version 2.2
  • SSI EPS Power Supply Design Guide, version 2.91 — калькулятор потребляемой мощности для различных конфигураций — сайт программы сертификации Plus 80

Выражаю благодарности за помощь в создании стенда

J-34, izerg, MAXakaWIZARD, cyclone.

Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news — это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector