Как выбрать
блок питания компьютера
Блок питания (БП) – обязательная составная часть любого компьютера, обеспечивающая электроэнергией все его устройства.
Собирая компьютер, блок питания можно приобрести отдельно, или же вместе с корпусом системного блока (когда БП продается как его часть). Последний вариант выгоден в денежном плане, но подходит только для офисных и других маломощных компьютеров. Для игровых же машин и компьютеров, предназначенных для серьезной работы, блок питания лучше покупать отдельно, уделив достаточное внимание его соответствию требованиям видеокарты, процессора и других внутренних устройств.
О том, какие характеристики блока питания необходимо учитывать при его выборе, и пойдет речь в статье.
Минимальное напряжение блока питания компьютера при полной нагрузке
Так как в тренде сейчас максимальное удешевление при производстве – то некачественный товар быстро доходит до дверей ремонтника. При покупки компьютера (особенно первого) – многие выбирают корпус «самый красивый из дешёвых» со встроенным БП – а многие даже не знают, что там есть такое устройство. Этот «скрытый девайс» на котором очень хорошо экономят продавцы. Но платить за проблемы будет покупатель.
О главном
Сегодня мы затронем тему ремонта компьютерных блоков питания, а точнее их первичной диагностики.Если есть проблемный или подозрительный БП – то диагностику желательно проводить отдельно от компьютера (на всякий случай). И поможет нам в этом вот такой агрегат:
Блок состоит из нагрузок на линиях +3.3, +5, +12, +5vSB (дежурное питание). Он нужен для имитирования компьютерной нагрузки и измерения выходных напряжений. Так как без нагрузки БП может показать нормальные результаты – а в нагрузке могут проявляться многие проблемы.
Подготовительная теория
Грузить будем чем попало (что найдете в хозяйстве) – мощные резисторы и лампы.
У меня валялись 2 автомобильные лампы 12V 55W/50W – две спирали (дальний/ближний свет). Одна спираль испорчена – будем использовать вторую. Покупать их не нужно – спросите у знакомых автомобилистов.
Конечно лампы накаливания имеют очень низкое сопротивление в холодном состоянии – и при запуске будут создавать большую нагрузку на короткое время – а это могут не выдержать дешевые китайцы – и не стартовать. Но плюс ламп — это доступность. Если достану мощные резисторы – поставлю вместо ламп.
Резисторы можно искать в старых приборах (ламповые телевизоры, радиолы) с сопротивлением(1-15 Ом).
Можно также использовать нихромовую спираль. Мультиметром подбираем длину с нужным сопротивлением.
Загружать будем не по полной а то 450W в воздух получится обогреватель. А ватт на 150 будет нормально. Если практика покажет что нужно больше – добавим. Кстати это примерное потребление офисного ПК. А лишние ваты рассчитаны по линиям +3.3 и +5 вольт – которые мало используются – примерно по 5 ампер. А на этикетке жирно написано по 30А –а это 200ватт которые ПК не может использовать. А по линии +12 часто не хватает.
Для нагрузки у меня в наличии:
- 3шт резисторы 8.2ом 7,5w
- 3шт резисторы 5.1ом 7,5w
- резистор 8.2ом 5w
- лампы 12в: 55w, 55w, 45w, 21w
Для расчётов будем использовать формулы в очень удобном виде (у меня висит на стене – всем рекомендую)
Итак выбираем нагрузку:
— линия +3.3В – используется в основном для питания оперативной памяти – примерно 5ватт на планку. Будем грузить на ~10ватт. Вычисляем нужное сопротивление резистора
R=V 2 /P=3.3 2 /10=1.1 Ом таких у нас нет, минимальный 5.1ом. Вычисляем сколько он будет потреблять P=V 2 /R=3.3 2 /5.1=2.1W–мало, можно поставить 3 параллельно – но получим всего 6W на троих–не самое удачное использование таких мощных резисторов (на 25%) – да и место займут большое. Я пока не ставлю ничего – буду искать на 1-2 Ома.
— линия +5В–мало используется в наши дни. Смотрел тесты – в среднем кушает 5А.
Будем грузить на ~20ватт. R=V 2 /P=5 2 /20=1.25 Ом — тоже малое сопротивление, НО у нас уже 5 вольт – да еще и в квадрате – получим намного большую нагрузку на те же 5-ти омные резисторы. P=V 2 /R=5 2 /5.1=4.9W – поставим 3 и будет у нас15W. Можно добавить 2-3 на 8ом (будут потреблять по 3W), а можно и так оставить.
— линия +12В – самая востребованная. Тут и процессор, и видеокарта, и некоторые малоежки (кулеры, накопители, ДВД).
Будем грузить на целых 155ватт. Но раздельно: 55 на разъём питания материнской платы, и 55 (+45 через переключатель) на разъём питания процессора.Будем использовать автомобильные лампы.
— линия +5VSB – дежурное питание.
Будем грузить на ~5ватт. Есть резистор 8.2ом 5w, пробуем его.
Вычисляем мощностьP=V 2 /R=5 2 /8.2=3Wну и хватит.
— линия -12В – тут подключим вентилятор.
Фишки
Еще в корпус добавим малогабаритную лампу 220В 60W в разрыв сети 220В. При ремонте часто используется для выявления КЗ (после замены каких-то деталей).
Собираем девайс
По иронии судьбы – корпус будем использовать тоже от компьютерного БП (нерабочего).
Гнёзда для разъёма питания материнки и процессора выпаиваем с неисправной материнки. К ним припаиваем кабеля. Цвета желательно выбрать как на разъёмы от БП.
Готовим резисторы, лампы, лед-индикаторы, переключатели и разъём для измерений.
Подключаем все по схеме .. точнее по VIP-схеме 🙂
Крутим, сверлим, паяем – и готово:
По виду должно быть все понятно.
Бонус
Изначально не планировал, но для удобства решил добавить и вольтметр. Это сделает прибор более автономным – хотя при ремонте мультиметр все равно где-то рядом лежит. Смотрел на дешевые 2-ух проводные (которые питаются от измеряемого напряжения) – 3-30 В – как раз нужный диапазон. Просто подключив к разъёму для измерений. Но у меня был 4,5-30 В и я решил поставитьуже 3-х проводной0-100 В – и питать его от зарядки мобильного телефона (тоже в корпус добавил). Так он будет независим и покажет напряжения от нуля.
Этот вольтметр также можно использовать для измерения внешних источников (батарейку или еще чего . )– подключив к измерительному разъёму (если мультиметр где-то пропал).
Фейс-контроль
Пару слов о переключателях.
S1– выбираем способ подключения: через лампу 220В (Выкл) или напрямую (Вкл). При первом запуске и после каждой пайки – проверяем через лампу.
S2 – подается питание 220В на БП. Должно заработать дежурное питание и загореться LED +5VSB.
S3 – замыкается PS-ON на землю, должен запустится БП.
S4 – добавка 50W на линии процессора. (50 там уже есть, будет 100W нагрузки)
SW1 – Переключателем выбираем линию питания и проверяем по очереди если все напряжения в норме.
Так как измерения у нас показывает встроенный вольтметр,то в разъёмы можно подключить осциллограф для более глубокого анализа.
Кстати
Пару месяцев назад купил около 25 БП (у закрывающиеся конторы по ремонту ПК). Половина рабочие, 250-450 ватт. Покупал как подопытных кроликов для изучения и попытки ремонта. Блок нагрузки как раз для них.
Вот и всё. Надеюсь было интересно и полезно. Я пошел тестировать свои БП и вам желаю удачи !
Допуски напряжения питания (ATX v2.2)
Таблица допусков блока питания | |||
---|---|---|---|
Номинальное напряжение | Допуск в процентах | Минимальное напряжение | Максимальное напряжение |
+ 3,3 В | ± 5% | +3,135 В | +3,465 В |
+ 5VDC | ± 5% | +4,750 В | +5,250 В |
+ 5VSB | ± 5% | +4,750 В | +5,250 В |
-5VDC (если используется) | ± 10% | -4,500 В | -5,500 В |
+ 12VDC | ± 5% | +11.400 В | +12.600 В |
-12VDC | ± 10% | -10.800 В | — 13.200 В |
Хорошая задержка питания (PG Delay) — это время, которое требуется блоку питания для полного запуска и подачи правильного напряжения на подключенные устройства.
В соответствии с Руководством по проектированию блоков питания для форм-факторов настольной платформы, задержка исправности питания, называемая задержкой PWR_OK в связанном документе, должна составлять от 100 мс до 500 мс.
Power Good Delay также иногда называют PG Delay или PWR_OK Delay
Схема устройства блока питания разъемов и распиновки разъемов
Чтобы узнать, какой блок питания нужен вашему компьютеру, нужно понимать его устройство, а главное распиновку и назначения разъемов кабелей. Прежде всего привожу схему:
Основным и самым большим разъемом является питание материнской платы. В зависимости от ее модели, плата питается разными типами коннекторов с различным количеством контактов. Как правило, современные платы имеют разъем 24pin. Однако более старые могут иметь 20-пиновый разъем, соответственно чаще всего блоки питания имеют вилку с разделенными 20+4 pin, чтобы иметь возможность подключать как старые, так и новые модели. Если же эта вилка на БП сделана монолитно, то подключить к старой плате c его уже не получится, так как у него другая распиновка от блока питания компьютера.
Стоит также обратить внимания на распиновку провода для питания процессора. Мощные современные процессоры часто имеют 8-ми пиновый разъем питания. На БП же может иметься как разделенный 8ми контактный (4+4, как на рисунке ниже), так и только 4-pin для более старых плат. В этом нет ничего страшного, если вы подключаете стары БП к новой плате, то для большинства повседневных задач на не самом мощном процессоре хватит и такого небольшого разъема, поэтому его можно смело цеплять к восьмипиновому на системной плате.
Для работы с современными комлектующими желательно иметь побольше разъемов питания SATA, а также Molex для подключения более старых жестких дисков и приводов, работающих с системной платой через шину IDE.
Для подключения видеокарт используется специальный разъем питания PCI-E, имеющий обычно 6+2 пин для старых карт с 6 контактами для старых и 8 для новых. На мощных современных видюхах требуется 2 коннектора по 8 контактов, поэтому при установке двух таких карт — понадобится аж 8 подобных вилок.
При нехватке какого-либо типа разъемов можно использовать многочисленные переходники.
Объявления
@E_C_C Fuse прямые. В софте TL866 вроде и нет инверсных, да и CodeVisionAVR тоже. Скрин фюзов с TL866 я выше привёл. Старший фьюз должен быть 0х99 а младший 0х04 — фюзы всегда были у меня ахиллесовой пятой, я в них дуб дерево хвойное, и эти цифры мне ни о чем не говорят. Сейчас всё работает, а фюзы которые установил я содрал с другого проекта, добавив только EESAVE. Рабочий вариант с CodeVisionAVR вот ниже. Допиливания хотелось бы, при смене времени нужно листать все таймера по дням недели, это не проблема, просто неудобство. Принудительное включение — в моём старом таймере при зажимании кнопки + и удержании её около 3сек реле включает принудительно и далее таймер работает в штатном режиме. то есть если мне вдруг понадобилось включить реле вот прям счас (в НЕ заданное время), я это сделать могу (на старом таймере) и далее реле работает пока не наступит время отключения.
@ВасяШпунт Вообщем по настройке, вот схема с цветными овальчиками: 1. Включаешь шмелёва и генератор. ГРОМКОСТЬ В КОМПЕ И НА УСИЛЕ БОЛЬШЕ НЕ ТРОГАЙ. Смысл получить не какое то определённое значение циферок, а минимальное из возможного. То есть нижеописанные манипуляции должны приводить к уменьшению значений THD. 2. крутишь резистор в красном овале R4, смотришь в этом окне на изменения цифорок Уменьшается — хорошо, начнет увеличиваться — хватит крутить. Напряжение в точке 2 относительно земли не превышай 100 В. 3. После крутишь R12 и смотришь изменения циферок. Уменьшается — хорошо, начнет увеличиваться — хватит крутить. После выключаешь усилитель, от ламповой панельки отпаиваешь R10 R11 и измеряешь сопротивление в точках 3 и 4. После последовательно соединяешь необходимые резисторы, чтобы получить ранее измеряемые значения (до 100% точности подбирать не обязательно) Припаиваешь получившиеся резюки обратно. Сразу скажу, R10 R11 буду скорее всего разные. 4. R18 — тоже подбираешь номинал по минимальному значению циферек. Номиналы скорее всего будут в диапазоне от15К до 25К. 5. Последним крутишь R6, пока в этом окне синусоида не начнет увеличиваться и обрезаться Может получится, что не обрезается. Тогда выставляешь на компе и усилке МАКС громкости и крутишь R6. Нужно получить максимальную необрезанную синусоиду на максимальной громкости. Как то так. ХЗ что ещё подсказать. Вобщем крути, смотри, процесс не быстрый. После расскажешь, что получилось.
Замечания хорошие, когда нибудь я допилю этот проект до большего функционала. Но это не точно ;-). Кстати со временем проявляется ещё один недостаток — пару раз в году сбивалось время или календарь. Связано это, скорее всего, с неудачной разводкой платы , нужно делать сплошной земляной полигон под 1307. Да и керамики по питанию добавить неплохо. Заметил , что сбоили управляющие через пускатель мощной нагрузкой . В то же время на экземпляре ничем не управляющим , а просто работающим в режиме часов , сбоев не наблюдается.
Я конечно извиняюсь, но почему транзистору КТ608 в открытом состоянии нужен радиатор? Напряжение коллектор — эмиттер порядка 1 вольта и ток 0.2 ампера, мощность на транзисторе всего 0.2 ватта. По идее транзистор греться не должен. Конечно мосфет предпочтительней, у него падение напряжения на переходе милливольты, даже IRLML2502TR подойдет. 415N0904215.pdf
Итоги и дальнейшие пути усовершенствования
На текущий момент использованная методика и стенд позволяют с хорошей точностью определить основные нагрузочные возможности, уровень пульсаций и соответствие допускам стандарта по всем основным питающим каналам блока питания. Однако всегда есть возможность внести улучшения, поэтому в скором времени планируется реализация блока для автоматического замера эффективности преобразования (КПД) блока питания, замеры фактора мощности, оптические датчики для замеров скорости вращения вентиляторов блока и температурные измерения в условиях, приближенных к реальным средам использования. Данная статья будет периодически обновляться, с учетом вносимых изменений. Также все пожелания и дополнения читателей будут внимательно рассмотрены и приняты во внимание.
Версия 1.01b от 2.02.2008. Начальная версия.
Использованные материалы и ссылки:
- ATX12V Power Supply Design Guide, version 2.2
- SSI EPS Power Supply Design Guide, version 2.91 — калькулятор потребляемой мощности для различных конфигураций — сайт программы сертификации Plus 80
Выражаю благодарности за помощь в создании стенда
J-34, izerg, MAXakaWIZARD, cyclone.
Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news — это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.