Магнитные носители информации

Магнитные носители информации

С начала 50-х годов ХХ века магнитные проволока, лента, карта, барабан и диск начали использоваться для записи, хранения и считывания информации в первых электронных цифровых вычислительных машинах.

В 1949 году в США Джон Моучли и Проспер Эккерт построили компьютер “BINAC” (от Binary Automatic Computer — двоичный автоматический компьютер), который мог принимать данные и с магнитной ленты. Устройства ввода на магнитной ленте, применявшиеся тогда в некоторых калькуляторах, действовали по тому же принципу, что и популярные тогда магнитофоны. Для первого в США компьютера, предназначенного для коммерческого применения, “UNIVAC” Д.Моучли и П.Эккерт разработали накопитель на магнитной ленте, которым можно было пользоваться как для ввода, так и для вывода информации. В отличие от недостаточно прочной пластмассовой ленты, применявшейся в компьютере “BINAC”, в ЭВМ “UNIVAC” использовалась металлическая. Устройство было относительно компактным: на одну бобину наматывалось до 400 м ленты шириной в 1,2 см, причем на каждом сантиметре ленты хранилась информация в количестве более 40 десятичных разрядов. Таким образом, на одной бобине ленты удавалось записать более миллиона символов, что было эквивалентно десяткам тысяч перфокарт (!). Также Д.Моучли и П.Эккерт разработали электронное устройство “UNISERVO”, оно могло считывать 12,5 тыс. символов в секунду, однако металлическая лента оказалась слишком грубой для чувствительных магнитных головок быстродействующего устройства и в последующих модификациях металлическая лента была заменена пластмассовой из материалов, достаточно прочных, но вызывающих меньшее разрушение магнитной головки.

В 60–80-е годы для хранения и использования больших массивов информации использовались накопители на магнитных лентах, похожие на большие магнитофоны.

С появлением персональных компьютеров магнитные ленты стали использоваться в основном для архивирования больших объемов информации.

Магнитные барабаны были первыми устройствами с записью на магнитной поверхности, которые применялись в качестве оперативного запоминающего устройства ЭВМ: отечественных “Урал-1” (рис. 1) и “М-3”, американских “Moonrobot” и “Elliot”. Они оказались настолько удачными устройствами хранения, записи и считывания информации, что в усовершенствованном виде продолжали применяться более 30 лет (до начала 80-х годов ХХ века) в ЭВМ первых двух поколений. В ЭВМ 2-го поколения магнитные барабаны использовались уже в качестве внешних носителей информации. Существовали целые залы магнитных барабанов для хранения больших массивов информации (баз данных и др.).

С конца 70-х годов в ЭВМ 3-го поколения начали широко использоваться магнитные диски (рис. 2) в специально разработанных накопителях. По числу используемых в накопителе магнитных дисков различались однодисковые и многодисковые. Однодисковые использовались в системах с мини- или микроЭВМ, в устройствах подготовки или сбора информации, в терминальной аппаратуре. Преимущественное развитие в эти годы получили однодисковые устройства, использующие гибкие магнитные диски.

Накопители, в которых в процессе эксплуатации носитель — диск или группа дисков, объединенная в единую конструкцию — пакет дисков, могли легко устанавливаться и извлекаться из накопителя, называют накопителями со сменными дисками. Число дисков в сменяемом пакете, как правило, не превышало 12, тогда как число дисков в стационарном могло достигать нескольких десятков.

Одной из предшественниц современных магнитных карт различного назначения (от банковских до проездных карт метро) можно считать магнитную карту, которая использовалась в устройстве ввода-вывода на магнитной карте типа МаК в ЭВМ “МИР-2”. Емкость карты составляла 1 Кб. (Семейство ЭВМ “МИР” создавалось в Институте кибернетики АН УССР под руководством академика В.М. Глушкова.)

В 1960–1970 гг. магнитная запись получила достаточно широкое распространение в системах связи. Она использовалась для организации магнитных переприемов фототелеграмм, для передачи “фотогазеты”, при метеоанализе, а также при анализе параметров действующих аналоговых и цифровых каналов связи при передаче по ним реальных сигналов в процессе эксплуатации.

В середине 70-х годов дальнейшее развитие программ космических исследований, связанных, в частности, с орбитальным мониторингом поверхности Земли, потребовало разработки нового класса бортовой регистрирующей аппаратуры — высокоинформативных запоминающих устройств, способных записывать и воспроизводить потоки видеоинформации со скоростью более 15 Мбит/с. В этих устройствах использовались высококоэрцитивные магнитные ленты с высокой плотностью записи.

В настоящее время продолжает использоваться и магнитная проволока. Например, бортовой магнитофон П-503Б, так называемый “черный ящик”, предназначен для записи речи на несгораемую магнитную проволоку в непрерывном режиме способом автопуска с выхода аппаратуры внутренней связи воздушного судна, радиоприемников и автономной записи с ларингофонов экипажа, а также одновременной записи кода времени и широтных данных. На катушке намотано 3,5 километра сверхтонкой магнитной проволоки из специального сплава. Скорость записи — 10 сантиметров в секунду.

История создания накопителей на гибких магнитных дисках (ГМД) неразрывно связана с именем Алана Шугарта, который в 1967 г. возглавил исследовательскую группу лаборатории фирмы IBM в г. Сан-Хосе, США. Первый гибкий магнитный диск имел диаметр 8 дюймов 4 и размещался в защитном чехле с чистящим внутренним покрытием. Емкость такого диска — 1 мегабайт. Начиная с 1971 г. к разработке и выпуску накопителей на ГМД приступили и другие фирмы, что привело к выпуску дисков различных диаметров — от 2 до 12 дюймов, однако стандартами на десятилетия стали ГМД диаметром 8, 5,25 и 3,5 дюйма.

Сами диски изготавливались из тонкого пластика, покрывались оксидом железа, а затем упаковывались в пластиковые или плотнобумажные пакеты — корпуса. Вся конструкция была довольно “мягкой”, отсюда и английское название “floppy disk” (floppy — гибкий). По типу 8-дюймовые дискеты делились на односторонние и двухсторонние. Для сравнения: 8-дюймовая дискета по объему хранения данных заменяла порядка 12 000 перфокарт или около 300 метров перфоленты. При этом допускалась еще и перезапись. По тем временам это была революция.

В 1976 году на смену 8-дюймовым floppy-дискам пришли 5,25-дюймовые. Изменился не только размер. Корпус стал более жестким, внутри он был оклеен специальным материалом, который предохранял диск от чрезмерного износа. Первые floppy-диски диаметром 5,25 дюйма были односторонними и вмещали до 160 Kб информации. Потом появились 180-, 360-, 720-килобайтные и 1,2-мегабайтные дискеты (рис. 3). Серийный выпуск ГМД с высокой плотностью записи (объемом 1,2 Мб) начался в 1984 г.

В начале 80-х годов для портативных компьютеров типа Macintosh фирмы Apple потребовались гибкие диски меньшего размера. Это привело к переходу на использование дисков диаметром 3,5 дюйма. Такой размер был первоначально предложен фирмой Sony в 1981 г. и вскоре стал стандартом. Корпус этих дисков стал еще более жестким. В отличие от 5,25-дюймовых дискет в 3,5-дюймовых диск защищен специальной подпружиненной шторкой (рис. 4).

Существовало несколько типов 3,5-дюймовых floppy-дисков: SS (Single Sided — односторонние), DS (Double Sided — двухсторонние), DD (Double Density — двойной плотности), HD (High Density — высокой плотности), EHD (Extra High Density — сверхвысокой плотности). В 1986 г. фирма IBM начала выпуск ГМД диаметром 3,5 дюйма емкостью 720 Кб, а в 1987 г. многие фирмы-производители начали выпуск ГМД емкостью 1,44 Мб. Новые диски емкостью 2,88 Мб были разработаны фирмой Toshiba в конце 1989 г., а с 1991 г. фирмы Sony, Mitsubishi и Panasonic также выпускали накопители этого формата.

В 1983 году были разработаны и 4-дюймовые floppy-диски. Но большого распространения они не получили.

Особенности SLR

    Используется лета шириной четверть дюйма. Полностью закрытый картридж с массивным металлическим основанием имеет двухкатушечную конструкцию (приемный и подающий барабаны находятся в внутри картриджа). Оба барабана приводятся в движение специальным ремнем, размещенным внутри картриджа. Картридж имеет лишь небольшое окошко для контакта головки чтения/записи с лентой и ролик, который сообщается с приводным ремнем внутри картриджа и с тонвалом привода. Таким образом, лентопротяжный механизм имеет минимальное количество движущихся частей (головка и тонвал), а, следовательно надежность такой конструкции максимальна.

Особенно в этом отношении интересно новое устройство SLR7 от Tandberg Data. Техические данные приведены в общей таблице, а стоимость этого устройства ниже, чем DDS4.

  1. Ориентированнные на минимальное время доступа и максимальную скорость Accelis с двухкатушечным катриджем. Причем для получения минимального времени доступа исходное положение ленты в катридже — не начало (как у других устройств) , а середина ленты.
  2. Ориентированные на максимальную емкость устройства Ultrium. Конструкция картриджа и привода напоминает DLT. Емкость картриджа для устройств первого поколения составляет 100 Гбайт, а для устройств третьего поколения через 2-3 года предполагается кмкость порядка 800 GB.

Поставки Ultrium первого поколения начались в 2001 году. Это устройство доступно в настоящее время по крайней мере от IBM и HP, автоматизированные библиотеки доступны от Exabute, HP и др. Картриджи Ultrium доступны также от HP и Exabyte.

Опыт пользования устройствами Ultrium пока еще не накоплен, отзывы пользователей в Европе пока еще противоречивы.

Другой метод магнитной записи — это наклонно-строчная магнитная запись. В середине 50-х годов фирмой Ampex был начат выпуск первых (естественно, аналоговых) видеомагитофонов с наклонно-сторочной записью. Суть метода состоит в том, что лента протягивается с небольшой скоростью (несколько сантиметров в секунду) мимо вращающегося в высокой скоростью цилиндра, на котором закреплены головки чтения-записи. За счет вращения блока головок получается высокая относительная скорость между лентой и головкой. Преимущества этого метода следующие. Так как абсолютная скорость движения ленты невелика, процессы старта и останова занимают меньше времени и оказывают меньшие механические нагрузки на ленту. Следовательно, можно использовать более тонкие ленты (например, новые более тонкие металлонапыленные ленты AME). Кроме того, при наклонно-строчной записи плотность расположения дорожек (измеряется в количестве дорожек на 1 дюйм) в несколько раз выше, чем при линейной записи. Это является результатом того, что длина одной магнитной дорожки сравнительно невелика, с одной стороны, и применения специального механизма подстройки положения вращающегося барабана с магнитными головками с другой стороны, а также использованием более совершенных носителей.

Название устройства Плотность расположения дорожек на носителе (колич. на 1 дюйм ширины)
DLT7000 416
SuperDLT1 896
TR-5 343
Mammoth 2209
DDS-3 2806

Конечно, помимо преимуществ у наклонно-строчной записи есть и недостатки. Это, прежде всего, ожидаемый более быстрый износ как ленты, так и головок. На самом деле, этого не происходит, так как при вращении барабана между рабочей поверхностью ленты и головкой создается некоторая воздушная прослойка, существенно снижающая трение ленты о головку чтения/записи. С другой стороны, современные магнитные ленты с металлонапылением имеют специальное углеродное покрытие, обладающее высокой прочностью и практически нулевым коэффициентом трения. Кроме того, на лентах AME есть еще поверхностный слой сухой смазки. Поэтому, к примеру, механизмы Mammoth, Mammoth-2 не уступают и даже несколько превосходят по долговечности механизмы DLT.

В настоящее время на рынке представлено 2 основных класса устройств, где реализована технология наклонно-строчной записи. Это устройства, использующие картриджи с лентой шириной 4 мм и устройства, работающие с лентой 8 мм. Есть еще класс устройств на базе механизма Betacam фирмы Sony (дальнейшее развитие формата Betamax, также предложенного фирмой Sony) и использующие кассеты типа Betacam. Это библиотеки для хранения видеоархивов, емкость которых измеряется десятками петабайт.

4-миллиметровые устройства

Это технология DAT предложенная в свое время фирмой Sony для цифровой записи звука. Приводы магнитных 4-мм лент подразделяются на поколения: DDS-1, DDS-2, DDS-4 и DDS-4. Основной поставщик 4-мм устройств — это фирма Sony.

8-миллиметровые устройства

Технология аналоговой наклонно-строчной, а впоследствии и цифровой записи на магнитную ленту шириной 8 мм была предложена в 80-х годах, опять же, фирмой Sony. Однако, впервые эта технология была адаптирована и оптимизирована для записи цифровых данных фирмой Exabyte. На рынке представлены 8-мм устройства Exabyte (Eliant, Mammoth, Mammoth-2), Ecrix (VXA) и Sony (AIT, AIT-2). Технические данные всех упомянутых устройств указаны в сводной таблице. Упомянутые 8-мм устройства имеют достаточно много общих черт, но есть и некоторые отличия. *

  • Магнитные носители. За счет особенностей конструкции ЛПМ Exabyte используются более совершенные магнитные ленты, чем в других устройствах.
  • Производительность (скорость чтения-записи). Обусловлено конструкцией блока вращающихся головок. На сегодняшний день устройство Mammoth-2 превосходит все остальные сравниваемые накопители.
  • Фирменные особенности. Приводы Exabyte имеют патентованную систему автоматической чистки тракта движения ленты SmartClean, что делает ненужным применение чистящих картриджей, а у Sony кроме автоматической системы очистки головок (специальный чистящий картридж тоже не нужен) есть фирменная технология (MIC, Memory In Cassette) ускоренного чтения каталогов картриджей за счет размещения твердотельной памяти прямо в картридже. Считывание этой памяти происходит практически мгновенно. Благодаря этому значительно снижается время доступа к данным на картридже. Если по каким либо причинам эта память выходит из строя (статические заряды, к примеру), то считывание каталога происходит обычным образом.

Теперь, собственно сравнение существующих технологий. Само разнообразие представленных на рынке устройств говорит о том что идеального привода, подходящего для всех случаев в природе не существует. Для оценки различных технологий используются определенные критерии. Это линейная плотность записи, эффективность формата, плотность расположения дорожек.

Линейная плотность записи — количество информации, записываемой на единице длины магнитной дорожки, измеряется Кб/дюйм

Привод магнитных лент Линейная плотность записи
DLT7000 86
Super DLT 1 * 133
TR-5 106
Mammoth 78
DDS-3 122

Максимальную линейную плотность записи имеют устройства Super DLT, DDS и Travan. У DLT и Mammoth есть некоторый запас для развития.

* Поставки Super DLT первого поколения OEM и в дистрибьюторские каналы начались в начале 2001 года.

Эффективность формата. Это соотношение между общим числом бит, записанных на ленту и числом битов данных. Две эти величины не совпадают, так как на ленту помимо самих данных записываются корректирующие коды, биты четности и другая служебная информация. Измеряется в процентах. Оптимальной считается эффективность 75%.

Привод магнитных лент Эффективность формата
DLT7000 74%
TR-5 76%
Mammoth 58%
DDS-3 59%

DLT и Travan обладают оптимальной и практически предельной эффективностью формата, 8-мм и 4-мм устройства еще имеют некоторый запас для развития. Объясняется это тем, что наклонно-строчная запись более молодая и не до конца оптимизирована для записи цифровых данных, в то время как технология линейной записи прошла несколько более длинный путь развития и лучше оптимизирована для цифровых данных.

Плотность расположения дорожек была рассмотрена несколько ранее. Самая высокая и практически предельная для нынешних носителей и магнитных головок плотность расположения дорожек у устройств DDS. Для устройств с линейной записью есть некоторый запас для дальнейшего увеличения емкости.

Видно, что каждая технология имеет свои достоинства и недостатки. К достоинствам DLT технологии, безусловно, можно отнести огромный парк работающих устройств и библиотек, а также совместимость между разными моделями DLT. Это делает возможным свободный обмен носителями между многими пользователями. Но, с другой стороны, необходимость поддерживать совместимость с более ранними моделями сдерживает развитие формата DLT в сторону увеличения емкости и скорости.

Наклонно-строчная запись появилась позже, чем линейная. Поэтому с самого начала в основе были заложены более прогрессивные технологические решения. В результате те же объемы записываются на гораздо меньшей площади поверхности ленты. Преимущества устройств, построенных на базе наклонно-строчной записи в том, что сами устройства компактнее, картриджи меньше, используется более совершенная магнитная лента, позволяющая хранить больше данных более длительное время.

Привод магнитных лент Mammoth-2 является наиболее быстрым в своем классе (и дорогим) среди всех представленных на рынке устройств, да и емкость картриджа Mammoth-2 на сегодняшний день выше, чем у любого другого устройства в этом классе. Правда, по емкости устройство Mammoth-2 уступает SDLT и Ultrium, но эти два устройства принадлежат к следующему поколению и сравнивать их с Mammoth-2 было бы не совсем корректно.

Бесплатно ничего не бывает. Поэтому за все эти достоинства приходится платить совместимостью. Устройства нового поколения обычно не совместимы со старым. Например, при переходе с Eliant 820 на Mammoth старые картриджи записывать нельзя, это обусловлено тем, что в для Mammoth используется магнитная лента нового поколения AME c другими параметрами записи. Кроме того, обмен картриджами даже между похожими устройствами (к примеру, между Mammoth, AIT или VXA) тоже невозможен из за различия форматов. С SDLT и Ultrium ситуация точно такая же.

Если говорить о более дешевых стандартизованных приводах DDS, то перенос картриджей даже одного класса (DDS -2, -3, -4) тоже не всегда возможен. Если говорить о долговременности хранения, то на первом месте будут устройства, работающие с наиболее совершенными на сегодняшний день лентами AME. Если прибавить к этому скорость и емкость, то безусловно чемпионом будет привод магнитных лент Mammoth-2. Превосходство Mammoth-2 над всеми остальными устройствами подтверждено многочисленными тестами, проводящимися разными независимыми экспертами. По своим техническим данным приводы магнитных лент уступают только SuperDLT и LTO Ultrium, но Mammoth-2 поставляется по дистрибьюторским каналам с начала 2000 года (в США поставки начались несколько раньше), а продажи SuperDLT по дистрибьюторским каналам начались более чем а год позже.

С точки зрения цен — дешевле всего приводы DDS и новые устройства SLR 7 от Tandberg Data. Они используются, в основном, в небольших рабочих станциях и серверах начального уровня.

Подводя итог, можно сказать следующее. Технология DDS (4мм) хороша там, где не требуется высоких скоростей, и не предполагается интенсивное (длительное непрерывное) использование устройства. Привод DDS очень компактен, занимает мало места и без проблем встраивается в любой компьютер. С точки зрения цены стоимость приводов DDS минимальна. Технология DLT и SLR рассчитана на тяжелые условия работы (длительное, практически круглосуточное использование). Устройства SLR имеют высокую скорость и емкость, высокую надежность, а невысокая стоимость позволяет использование в традиционно занимаемых DDS рыночных нишах. Учитывая гораздо лучшую (чем у DDS) переносимость носителей младшие устройства SLR могут быть использованы вместо DDS, а старшие — могут стать разумной альтернативой технологиям Mammoth и DLT, так как практически не уступают по техническим данным, а цена на них несколько ниже.

Технология DLT обладает высокой емкостью, скоростью, используется в системах среднего уровня как в автоматизированных библиотеках, так и в виде автономных устройств. Если уже есть парк катриджей и важна переносимость носителей — DLT будет лучшим выбором.

Устройства DLT1 совместимы по чтению только с DLT4000, но цена соизмерима со старшими DDS, а емкость — соответствует DLT8000.

SDLT, поставки которых начались с апреля 2001 года, в нынешнем своем виде не обладают совместимостью с DLT7000, 8000 и др., что практически ставит их в один ряд с LTO Ultrium. Преимущества SDLT перед Ultium незначительные: несколько больше емкость и чуть-чуть меньше цена.

По спецификациям скорость LTO Ultrium несколько больше, но опыта работы этих устройств в реальных условиях пока недостаточно, чтобы сделать вывод о их преимуществах или недостатках.

8-мм устройства (AIT, а особенно Mammoth) обладают наивысшей скоростью и емкостью (исключая Super DLT и Ultrium, реального опыта работы которых пока еще слишком мало). Если важна скорость, нет «наследственного» парка картриджей и непринципиальна переносимость носителей (с AIT на Mammoth, например) — оптимальным решением будет AIT -2 или Mammoth-2. Эти два устройства не сильно различаются по характеристикам, а стоимость AIT несколько меньше.

Сравнительные тесты работы устройств Mammoth-2, AIT-2, DLT в реальных условиях с разными прикладными программами под разными операционными системами проводились не раз и неизменно лучшие результаты показывал привод Mammoth-2.

Технологии AIT-2 и Mammoth-2 обеспечивает несколько меньшую, чем DLT или LTO удельную стоимость хранения данных. Кроме того, Mammoth-2 от Exabyte — единственный на рынке привод магнитных лент, который может иметь интерфейс Fibre Channel (оптический или «медный», в зависимости от установленного модуля GBIC). Это особенно важно при построении сетей хранения данных (SAN), где используется, в основном, интерфейс FC. В данном случае привод Mammoth-2 подключается к коммутатору или концентратору FC напрямую, без использования не прибавляющих надежности и производительности «мостов» FC — SCSI. Поставки этих приводов уже начались.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector