Квантовый компьютер и его основная суть

Почему так сложно создать квантовый компьютер? С белорусским физиком объясняем технологию будущего

Изобретению квантовых компьютеров частенько предсказывают прорыв, аналогичный прорывам при изобретении колеса, покорении огня или создании хорошо знакомых нам компьютеров. Но пока с этой задачей в полном масштабе никто справиться не сумел. В чем же основная загвоздка и зачем нам квантовые компьютеры? Сегодня Onliner.by объясняет суть компьютеров будущего, а помогает нам в этом заместитель заведующего Центром квантовой оптики и информатики Института физики НАН Беларуси член-корреспондент Дмитрий Могилевцев.

Зачем вести разработки по созданию квантовых компьютеров? Чем нас не устраивают нынешние, которые постоянно прогрессируют в своей мощности? Теоретически квантовые компьютеры способны быстро решать задачи, на которые даже у суперкомпьютеров уйдут тысячелетия.

— Но есть нюанс. Пока квантовый компьютер дает выгоду только для определенного круга задач. Сейчас они и строятся под такие задачи. Поиск дающих выгоду квантовых алгоритмов — это сама по себе отдельная дисциплина, — рассказывает Дмитрий Могилевцев. — Бум квантовых компьютеров начался с того, что американец Питер Шор предложил с их помощью решать очень важную с практической точки зрения задачу факторизации. Она имеет огромное значение в криптографии.

Перемножить целые числа — это просто, а вот узнать, на какие простые множители разлагается число — крайне трудная задача для классического компьютера. 15 факторизуется на простые числа 3 и 5. Но что если число очень большое и состоит из тысяч цифр?

В теории на классическом компьютере такую задачу разрешить можно, однако на практике это потребует много времени. Увеличивается число — временны́е затраты возрастают по экспоненте и быстро выходят на времена, сравнимые с возрастом Вселенной. А алгоритм Шора, используя возможности квантовых компьютеров, способен произвести факторизацию за время, не намного превосходящее время умножения целых чисел.

Например, современный суперкомпьютер, позволяющий делать более десяти в пятнадцатой степени операций в секунду, разложил бы число с пятьюстами знаками за 5 млрд лет. Квантовый компьютер со скоростью всего миллион операций в секунду решил бы ту же задачу за 18 секунд.

Так как факторизация лежит в основе всей современной криптографии, изобретение эффективных квантовых компьютеров поставит под угрозу большинство активно используемых ныне методов шифрования данных. Ведь вся информация, которая нынче передается через сеть, подвергается шифрованию — банковские транзакции, секретная переписка в соцсетях и прочее. Квантовый компьютер сможет подобрать код для расшифровки этих данных в мгновение ока. И тогда не останется ничего тайного.

— Правда, надолго ли — это еще вопрос. Уже сейчас ведутся работы над постквантовым шифрованием, устойчивым к подобному взлому. Хотя эффективность таких систем криптографии пока еще много хуже традиционных.

А еще квантовые компьютеры могут быть очень полезными для моделирования динамики сложных квантовых систем. Именно в этом еще в начале 80-х годов прошлого века видел их выгоду знаменитый физик, лауреат Нобелевской премии Ричард Фейнман. Кстати, сама идея квантовых вычислений предложена известным советским математиком Юрием Маниным в 1980 году.

Чем отличается работа квантового компьютера от обычного

Работа квантового компьютера от обычного отличается в разы большей скоростью обработки данных. Понять это проще на простом примере. Допустим, нам нужно рассадить 3 человека за 2 столика в ресторане. Вариантов решения этой задачи всего 8 (2³). Эту задачу любой суперкомпьютер решит мгновенно.

Но, если задачу усложнить и предложить машине рассадить 100 человек в два банкетных зала, то вариантов ее решения становится огромное множество. Эта цифра будет выглядеть, как 2 в сотой степени. Это число, состоящее из 30 символов. Самому мощному суперкомпьютеру на обработку всех этих вариантов понадобится приблизительно 4,6х10³⁵ лет. Это неимоверно много. По сути, срок решения задачи сводится к бесконечности.

Получается, что задача вроде бы простая, рассадить 100 человек в два зала. Но вариантов ее решения существует такое множество, что решить ее с помощью привычных устройств невозможно. Квантовый супермощный компьютер способен решить эту задачу за секунды. В этом и есть его основное отличие от обычного.

Суть квантового компьютера конечно же состоит не в том, чтобы подобрать наиболее совместимую компанию для вечеринки. Задачи, которые ставятся перед этим устройством гораздо сложнее.

Проблемы квантовых компьютеров

У квантовых компьютеров есть одна огромная проблема. В силу своих особых возможностей кубиты нуждаются в достаточно спокойной среде, чтобы можно было точно считывать с них любые данные. Каждое, даже самое маленькое нарушение сделает невозможным определение точного положения.

В случае классических компьютеров подобная проблема также играла важную роль в прошлом, но сегодня она настолько незначительна, что часто игнорируется даже в академической науке.

Для классических устройств вероятность ошибки составляет, примерно, 1 из 10 17 бит. В случае квантовых компьютеров это – один из нескольких сотен. И это в ситуации, когда квантовые компьютеры работают в максимально изолированных условиях и при температуре −272 градуса Цельсия, то есть немного выше абсолютного нуля. Любые колебания температуры, изменение электромагнитного поля и даже движение разрушают весь расчёт.

Другая проблема – «нестабильность» квантовых состояний. Каждый раз, когда мы измеряем квантовое состояние или хотим его нарушить, оно возвращается в одно из двух положений. Квантовое состояние распадется. Этот процесс называется квантовой декогеренцией.

Представьте себе это так: квантовый компьютер – это опытный математик, который выполняет сложные вычисления, а результаты составляют от 0 до 1 миллиона. Мы, в свою очередь, ребёнок, который понимает только то, что может быть много или мало чего-то. Каждый раз математик может получить разные результаты, например, 184662 или 356670, но в противоречии с нашим пониманием мира каждый из них будет классифицирован в один из двух «мешков» – маленький (0) или большой (1), без промежуточного значения. Это квантовая декогеренция.

Ионы и атомы

Но и у сверхпроводящей технологии есть проблемы, которых нет в системах на ионах и нейтральных атомах. Ионы и атомы – естественная реализация квантовой системы, так как они фундаментально все одинаковы, а сверхпроводники – искусственные структуры, поскольку они делаются литографией, и все они разные. Помимо того, что нужно корректировать ошибки, с каждым кубитом надо «разговаривать» на его частоте. К тому же все сделано на твердотельной электронике, которая имеет прямой контакт с окружающей средой, и процессы разрушения квантовости там сильные.

В системах на ионах все очень классно, пока их немного. У них потрясающее качество логических операций, так как заряженные частицы прекрасно взаимодействуют между собой. Но есть проблемы в том, чтобы сделать сотни ионных кубитов. Ионы ловятся электрическими полями. «Не проблема сделать цепочку из ста ионов, – говорит руководитель научной группы по созданию квантового компьютера на холодных ионах Российского квантового центра Кирилл Лахманский. – Но увеличить больше сотни очень трудно. Проблемы начинаются, когда нужно расположить цепочки рядом, поставить две ловушки очень близко друг к другу. Масштабирование – главная проблема при работе с ионами».

Изолированные ионы и нейтральные атомы висят почти в абсолютном вакууме. В квантовых компьютерах на базе холодных атомов используются сфокусированные лазерные лучи, которые могут в области максимальной интенсивности удерживать атомы. Используя лазерные световые ловушки, можно делать решетку из сотен узлов и в каждый поместить одиночный нейтральный атом, который играет роль физического кубита. Увеличение числа кубитов не требует принципиального изменения установки. «Сложности начинаются с логическими операциями, – говорит Станислав Страупе. – Чтобы квантовое состояние распадалось медленнее, чем выполнялся алгоритм, надо научиться делать стабильные кубиты и совершать быстрые операции. С этим проблема во всех технологиях».

Применение квантовых компьютеров

В том же 1994 году американский ученый Питер Шор разработал первый (из многих) квантовый алгоритм для разложения целого числа на простые множители. Удивительно, но даже для самых мощных современных компьютеров разложить длинное (в несколько сотен цифр) число на два простых множителя — невероятная по затратам времени задача. Именно на этом строятся самые современные системы шифрования и защиты информации. Шор же доказал, что квантовый компьютер, содержащий 1000 и более кубитов, взломает любой код буквально за секунды.

Вся хитрость в том, что квантовый компьютер проверяет возможные варианты не последовательно, как это делает обычный процессор, а одновременно. Скорость обработки информации при таком способе возрастает просто колоссально. Работа Шора показала лишь одну из сфер практического применения квантового компьютера. Возможности квантового взлома систем шифрования (в том числе в военной сфере) сразу привлекли в эту область разработок немалые ресурсы. Например, Китай планирует потратить более 11 миллиардов долларов на строительство нового квантового центра. Не отстают от КНР также ЕС и США, собственные средства в квантовые разработки вкладывают и частные компании — такие как Google и IBM. Свой вклад в создание квантового компьютера вносит и Россия.

Принцип работы КК

Привычная схема работы компьютеров, ноутбуков, смартфонов или планшетов, использующая цифровой принцип, базируется на использовании классических алгоритмов, что кардинально отличается от принципа действия квантового компьютера. Так, обычный компьютер покажет одинаковый результат вне зависимости от того, сколько раз запустить вычисление, варианты просчитываются последовательно.

Принцип работы КК

Квантовый компьютер использует совершенно иной – вероятностный принцип работы. В определённом смысле система уже содержит все возможные варианты решений. Результат вычислений – это наиболее вероятностный ответ, а не однозначный, при этом при каждом последующем запуске квантового алгоритма вероятность получения правильного ответа растёт, а значит, спустя 3–4 быстрых прогона можно быть уверенным, что мы пришли к верному решению, например, ключу шифрования.

В квантовых системах, применяющих в своей работе кубиты, с ростом числа частиц растёт в геометрической прогрессии и количество обрабатываемых одновременно значений.

Говоря о том, как работает квантовый компьютер, стоит упомянуть и о связи кубитов. При наличии нескольких кубитов в системе изменение одного повлечёт также изменение остальных частиц. Вычислительная мощность достигается путём параллельных расчётов.

Несмотря на многомиллионные вложения, развиваются квантовые технологии достаточно медленно. Это связано с большим количеством трудностей, с которыми пришлось столкнуться учёным в процессе исследований, включая необходимость построения низкотемпературных саркофагов с максимальной изоляцией камеры с процессором от любых возможных внешних воздействий для сохранения квантовых свойств системы. Кроме того, перед исследователями стоит задача по решению ошибок, поскольку квантовые процессы и вычисления имеют вероятностную природу и не могут быть стопроцентно верными.

Построение стабильных систем к тому же далеко от идеала, а при реализации квантового компьютера на физическом уровне применяется несколько вариантов решений с использованием разных технологий. Так что создание полноценного универсального квантового компьютера всё ещё в будущем, хоть и не таком далёком, как казалось ещё пять лет назад. Его созданием занимаются крупнейшие компании, такие как IBM, Google, Intel, Microsoft, внёсшие большой вклад в развитие технологий, а также некоторые государства, для которых данный вопрос имеет стратегическое значение.

Квантовые компьютеры сегодня

Теперь перейдем к самому интересному — какое состояние сейчас у квантового компьютера? А то их пока как-то не наблюдается на полках магазинов!

На самом деле все, что я описал выше, это не такая уж и фантастика. Квантовые компьютеры уже среди нас и уже работают. Их разработкой занимаются GOOGLE, IBM, INTEL, MICROSOFT и другие компании поменьше. Кроме того в каждом большом институте есть исследовательские группы, которые занимаются разработкой и исследованием квантовых компьютеров.

Сундар Пичаи и Дэниэл Сэнк с квантовым компьютером Google. Октябрь 2019

В октябре прошлого года, в журнале Nature, Google выложила статью, которая шарахнула по всему миру огромными заголовками — КВАНТОВОЕ ПРЕВОСХОДСТВО!

В Google создали квантовый компьютер с 53 кубитами и смогли решить задачку, за 200 секунд, на решение которой у обычного компьютера ушло бы 10000 лет!

Конечно IBM было очень обидно и они начали говорить, что задача слишком специальная, и вообще не 10000 лет, а 2.5 дня, но факт остается фактом — квантовое превосходство было достигнуто в определенной степени!

Так что теперь вопрос считанных лет, когда квантовые компьютеры начнут использоваться повсеместно! IBM, например, только что анонсировали что в 2023 году создадут коммерческий квантовый компьютер с 1121 кубитами!

Чтобы вы понимали калькулятор Google даже не считает сколько будет 2 в 1121 степени, а просто говорит — бесконечность! И это совсем не предел.

Уже ведется разработка компьютеров на миллионы кубитов — именно они откроют истинный потенциал квантовых вычислений.

Более того, вы уже сейчас можете попробовать самостоятельно попробовать квантовые вычисления! IBM предлагает облачный доступ к самым современным квантовым компьютерам. Вы можете изучать, разрабатывать и запускать программы с помощью IBM Quantum Experience.

Хитрая технология

Квантовые вычисления не универсальны, они не способны заменить традиционные компьютеры. «Информация обрабатывается хитро, мы пользуемся всем большим пространством состояний, чтобы ее переваривать, но наши возможности считать ее оттуда невелики. Потому что при измерении у вас происходит коллапс до двоичного кода, — говорит старший научный сотрудник Центра квантовых технологий МГУ, руководитель сектора квантовых вычислений Станислав Страупе. — Поэтому квантовые алгоритмы — наука о том, как извлечь из этого многомерного пространства полезную информацию за небольшое количество измерений». Математический аппарат квантовой теории готов с середины XX века, и сейчас проблема не в математике, а в аппаратной реализации. Главные технологии, на которых сосредоточены все усилия, — ионные ловушки, нейтральные атомы, фотоны и сверхпроводники. Как и в атомном проекте, никто точно не знает, какая из технологий выйдет в итоге в лидеры, поэтому развивать требуется все.

Чтобы не потеряться и всегда быть на связи, читайте нас в Яндекс.Дзене!

2007

Канадская компания D-Wave продемонстрировала первый 16-кубитный квантовый компьютер, способный решать целый ряд задач и головоломок, типа судоку.

С 2011 года D-Wave предлагает за $11 млн долларов квантовый компьютер D-Wave One с 128-кубитным чипсетом, который выполняет только одну задачу – дискретную оптимизацию.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector