Квантовые вычисления превзошли 99% точности сразу в трёх исследованиях

Квантовый компьютер —>

> > This page is based on a Wikipedia article written by contributors (read/edit).
Text is available under the CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.

Tell your friends about Wikiwand!

  • Введение
  • Введение
  • Теория
    1. Кубит
    2. Вычисление
    3. Алгоритмы
    4. Пример реализации операции CNOT на зарядовых состояниях электрона в квантовых точках
    5. Квантовая телепортация
  • Возможные применения
    1. Приложения к криптографии
    2. Исследования в области искусственного интеллекта
    3. Молекулярное моделирование
  • Физические реализации квантовых компьютеров
    1. Принципы физической реализации
    2. Экспериментальные образцы
    3. Адиабатические компьютеры D-Wave
  • См. также
  • Примечания
  • Литература
  • Ссылки

Квантовые вычисления превзошли 99% точности сразу в трёх исследованиях

Квантовый компьютерный чип из кремния, использованный в исследовании RIKEN.

Квантовый компьютерный чип из кремния, использованный в исследовании RIKEN.
Фото RIKEN.

Три группы учёных со всего мира достигли важной вехи в области квантовых вычислений.

Все три команды добились точности вычислений более 99% в квантовых устройствах на основе кремния. Это достижение прокладывает путь к практичным масштабируемым квантовым компьютерам, производящим безошибочные вычисления.

Напомним, что классические компьютеры хранят и обрабатывают информацию в битах. Квантовые компьютеры, в свою очередь, используют кубиты, которые в теории позволяют производить больше вычислений в единицу времени.

Так, кубиты, в отличие от классических битов, могут принимать не только значения 1 или 0, но и все промежуточные одновременно (в силу своей квантовой природы). В результате пять запутанных кубитов могут хранить и обрабатывать столько же информации, что и 32 (2 в пятой степени) классических бита, 10 запутанных кубитов = 1000 классических битов, а 300 кубитов могут быть соотнесены с таким количество битов, сколько атомов во всей Вселенной.

Это должно позволить квантовым компьютерам стать в разы более мощными, чем классические.

Однако квантовые состояния очень уж чувствительны к внешнему вмешательству, что может привести к ошибкам, сильно ограничивающим практическое использование этих машин.

Но теперь три новых исследования описали квантовые компьютерные системы, которые не выдавали ошибки в 99% вычислений. Более того, все эти устройства основаны на кремнии, что должно упростить их производство: существующая коммерческая инфраструктура широко использует кремниевые полупроводники.

Команда под руководством Университета Нового Южного Уэльса (UNSW) в Австралии достигла точности 99,95% в системе с одним кубитом и 99,37% в системе с двумя рабочими кубитами.

Вторая команда из Делфтского технического университета в Нидерландах получила 99,87% точности с одним кубитом и 99,65% с двумя.

И, наконец, команда Института RIKEN в Японии достигла точности вычислений 99,84% в системе с одним кубитом и 99,51% в системе с двумя кубитами.

«Когда ошибки настолько редки, их становится легче обнаружить и исправить, – добавляет профессор Андреа Морелло (Andrea Morello), ведущий автор исследования из UNSW. – Это показывает, что [теоретически] можно создавать квантовые компьютеры, которые имеют достаточный масштаб и достаточную мощность для выполнения значимых вычислений. Это исследование является важной вехой на пути, который приведёт нас к цели».

Система UNSW кодирует информацию в ядерных спинах атомов фосфора, имплантированных в кремниевый чип. Получается, что ядра этих атомов являются основным процессором, выполняющим квантовые операции. Они связаны друг с другом посредством электрона, квантово запутанного с каждым атомом.

Эксперименты в Делфтском техническом университете и Институте RIKEN проводились с использованием спинов двух электронов в качестве кубитов, каждый из которых был ограничен квантовой точкой, выполненной из кремния и кремний-германиевого сплава.

Поскольку все три команды превзошли порог 99-процентной точности, следующим шагом исследователей будет разработка кремниевых квантовых процессоров, которые можно масштабировать для коммерческих квантовых компьютеров.

Все три прорывных работы были опубликованы в авторитетном научном издании Nature (1, 2 и 3).

Ранее мы рассказывали о предыдущих достижениях австралийской команды и о том, какие вычисления стоит проводить на квантовых компьютерах, а также о создании универсальной системы устранения ошибок для квантовых компьютеров будущего.

Больше новостей из мира науки и технологий вы найдёте в разделе «Наука» на медиаплатформе «Смотрим».

Зачем нужен?

У простого человека возникает вопрос: зачем нужна столь сложная система, если можно подождать, пока все решит классический компьютер? Дело в том, что наука регулярно сталкивается с задачами, на разрешение которых бинарная система потратила бы тысячи и миллионы лет. Квантовые позволяют получить такие решения уже в наши дни.

Квантовый компьютер не является и не станет альтернативой обычному, у него совсем другие функции. Есть особый класс научных проблем, на решение которых классическая система потратила бы время с момента создания вселенной и до наших дней, а квантовая управится за час. Рассмотрим группы таких задач.

С преобразованием Фурье

Как работает квантовый компьютер и какие проблемы существуют?

Это группа шифрования и криптографии, использующих алгоритм Шора. Он способен взломать Биткоин и RSA. Это стало реально благодаря невероятной скорости преобразования, при условии правильного применения реализуется экспоненциальное ускорение.

Оптимизация

Как работает квантовый компьютер и какие проблемы существуют?

Это все комбинаторные проблемы, для решения которых необходимо перебрать все множество возможных вариантов. Существует алгоритм, который произвел фурор при появлении, это алгоритм Гровера. Он делает возможным превосходство по времени решения относительно простого перебора вариантов, но при этом не требует столь сильного ускорения, как при алгоритме Шора. Такого рода проблемы актуальны для оптимизации, логистики, экономики.

Машинное обучение

Как работает квантовый компьютер и какие проблемы существуют?

Алгоритм HHL, обеспечивает значительное ускорение. Применяется для решения систем линейных уравнений, превосходит по скорости классические методики. Линейные уравнения используются повсеместно, часто в сфере задач машинного обучения. Одним из самых важных сегментов использования квантовых компьютеров — сфера задач искусственного интеллекта. Можно решать даже такие проблемы, которые распределены по суперпозициям разных классических выборок.

Симуляция квантовой системы

Как работает квантовый компьютер и какие проблемы существуют?

Наиболее естественная из всех сфера применения. Ее использование предложил еще Фейнман, его идеей было моделирование очень сложной квантовой системы с использованием другой сложной системы, которая уже известна и является управляемой.

Из всего следует, что квантовые системы способны создавать новые средства, новейшие лекарства, неизвестные ранее высокотемпературные сверхпроводники. У всех этих задач есть общая черта: необходимость организации атомных взаимодействий. У обычного компьютера на этой уйдут триллионы лет. у квантового — несколько часов.

История создания квантового компьютера

4. Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. – Proc. R. Soc. London A 400, 97, 1985.

6. Yao А. С.-С. Quantum circuit complexity // Proceedings of the 34th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1993, p. 352.

7. Shor P.W. Algorithms for Quantum Computation: Discrete log and Factoring. // Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser, IEEE Computer Society Press, Los Alamitos, CA, 1994, p.124.

9. Grover L. Afast quantum mechanical algorithm for database search // Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996, pp. 212–219.

10. Kitaev A.Y. Quantum measurements and the Abelian stabilizer problem. – LANL e-print quant-ph/9511026. – http://xxx.lanl.gov.

11. Shor P.W. Fault-Tolerant Quantum Computation. – LANL e-print quant-ph/9005011. – http://xxx.lanl.gov.

12. Bennett С.Н., Bernstein E., Brassard G., Vazirany U. Strengths and Weaknesses of Quantum Computing. – LANL e-print quant-ph/9701001, http://xxx.lanl.gov, to appear in SIAM J. On Computing.

«Мы сделаем свои биты. С суперпозицией и запутанностью».

Ричард Фейнман 1981

Обычные компьютеры вошли в нашу повседневную жизнь. С каждым годом они становятся все лучше и лучше. Но наступит момент, когда компьютеры достигнут пика. Настанет время, когда обычные компьютеры перестанут улучшаться в связи с физическими параметрами. И на смену им придут квантовые компьютеры. На данный момент разработкой квантового компьютера занимаются такие компании как: D-WAVE (Канадская компания),IBM (Американская компания), Google (Американская компания), Intel (Американская компания) и другие. Квантовый компьютер сможет решать многие задачи в сотни разбыстрее чем обычный компьютер. Например, разложения простых чисел на множители. Обычный компьютер с этой задачей способен справиться за большой промежуток времени, порой превышающий время существование вселенной.

Многие опасаются квантовых компьютеров, так как они будут способны взломать любой пароль и смогут узнать любую закодированную информацию. Но, с приходом квантовых компьютеров, придет новая система безопасности.

Развития квантовых технологий можно разделить на два этапа. Благодаря первому этапу были изобретены такие предметы как лазер, CD, флеш-память и магнитно-резонансный томограф. Сейчас идет второй этап развития квантовых технологий. Главным изобретением второго этапа должен стать мощный квантовый компьютер. На данный момент существуют квантовые компьютеры, но их производительная мощность пока мала. Самый мощный квантовый компьютер (51-кубитный) был разработан в июле 2017 года физиками из Российского квантового центра под руководством Михаила Лукина. В настоящие время компания Google работает над 49-кубитным квантовым компьютерам.

Существует очень много проблем в создании квантового компьютера. Одна из самых главных – это взаимодействие с окружающей средой. Квантовый компьютер не устойчив к электромагнитным волнам, радио волнам, он работает только при низких температурах.

Цель проекта. Изучить основные проблемы создания квантового компьютера.

Гипотеза. Квантовый компьютер – машина, которая объединяет в себе достижения компьютерной науки и квантовой физики.

Актуальность. Потребности человечества в производительности компьютерных процессоров уже сейчас обгоняют развитие классической электроники. Квантовый компьютер – это вероятность сделать скачок на более высокий уровень развития всего человечества. И создание квантового компьютера, способного решать некоторые важные вычислительные задачи гораздо быстрее обычного, – одно из возможных направлений развития.

Задачи:

1. Определить, какие внешние факторы влияют на работу квантового компьютера.

2. Выяснить, где может применяться квантовый компьютер.

3. Проанализировать, какие существуют преимущества квантового компьютера перед обычным компьютеров.

История возникновения квантовых компьютеров

Первым, кто предложил использовать квантовые вычисления был Ю.И. Манин. В 1980 он публикует свою работу «Вычислимое и невычислимое», в которой предлагает использовать квантовые вычисления. В1982 году Ричард Фейнман публикует свою статью, в которой говорит о том, что определённые квантово-механические операции нельзя в точности переносить на классический компьютер. Дэвид Дойч в 1985 предложил математическую модель квантового компьютера. Квантовые вычисления до середины 90-х годов развевались очень слабо. На практике оказалась довольно сложно реализовать квантовый компьютер. Но в 1994 Питер Шор предложил алгоритм разложения n-значного числа на простые множители за время полиноминально зависящее от n. Этот алгоритм называют квантовым алгоритмом факторизации. Благодаря этому открытию началось стремительно развитие квантовых вычислений. В 2000 году продемонстрирован первый работающий пяти кубитный квантовый компьютер в Мюнхенском техническом университете. 2007 канадская компания D-WAVE продемонстрировала первый 16-кубитный и 28-кубитный квантовый компьютер. В 2011 году они выпустили квантовый компьютер с 128-битным чипом. В 2013 с 512–битным чипом. На самом деле эти компьютеры способны справится только с одной определенной задачей. Из-за этого на данный момент самым мощным квантовым компьютером считается 51-кубитный квантовый компьютер, который разработали Русские ученые в 2017 году.

Квантовый компьютер состоит из:

1 – классическая быстродействующая ЭВМ;

2 -квантовый процессор;

3, 4 – устройства записи информации в квантовые регистры;

5 –устройство управления квантовыми операциями;

6 – устройство считывания информации с кубитов. (См. Приложение 1)

Для того чтобы разобраться как работает квантовый компьютер давайте в начале разберёмся на каких основах он работает.

1. Квантовая суперпозиция.

2. Квантовая запутанность.

3. Квантовый параллелизм. Основным элементом квантового компьютера является

1) Квантовая суперпозиция – это способность атома находится в нескольких местах одновременно. К примеру, бит состоит из 1 и 0, то есть он может принимать только одно значение один или ноль. Кубит тоже состоит из 1 и 0. Но он может принимать эти два значения одновременно. Такое состояние кубита и называется суперпозицией.

2) Квантовая запутанность – это квантовое состояние двух частиц, которые оказываются взаимозависимыми друг от друга. К примеру, поляризация фотона, когда фотон проходит через кристалл и разделяется на две части и обе эти части проходят через фильтр. Оба этих фотона могут пройти через фильтр либо не пройти. Причем фотоны принимают решение мгновенно, то есть, быстрее, чем скорость света. Они находятся на расстоянии, но при этом связаны между собой.

3) Квантовый параллелизм. В основе квантового параллелизма лежит использование при вычислениях суперпозиций базовых состояний, что позволяет одновременно производить большое количество вычислений с различными исходными данными. К примеру, 54–разрядный квантовый регистр может хранить до 254 значений одновременно, а квантовый компьютер может все эти значения обрабатывать.

4) Кубит является основной ячейкой квантового компьютера и квантовой частицей, имеющей два базовых состояния 1 и 0 или оба этих состояния одновременно.

Мы свами разобрали четыре основных базиса, благодаря которым функционирует квантовый компьютер. Теперь давайте разберем принцип работы квантового компьютера. Квантовый компьютер – это вычислительное устройство, которое работает за счет квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Зная, что кубит может принимать сразу два состояния 0 и 1, можно сказать, что это позволяет проводить несколько вычислений одновременно.

Существует множество алгоритмов, за счет которых работает квантовый компьютер. Алгоритм Шора был разработан в 1994 году Питером Шором. Этот алгоритм позволяет разложить простые числа на множители. В 2001 году с помощью этого алгоритма на квантовом компьютере разложили число 15 на множители 3 и 5. Алгоритм Залки-Визнера предназначен для моделирования квантовых систем. Алгоритм Гровера предназначен для решения уравнений. Алгоритм Дойча – Йожи был предложен Давидом Дойчем и Ричардом Йожей в 1992 году. Алгоритм Дойча – Йожи стал одним из первых алгоритмов, предназначенных для выполнения на квантовых компьютерах. Задача которую может решить алгоритм Дойча – Йожи заключается в определении, является ли функция нескольких двоичных переменных f(x1), f(x2), …, f(xn), постоянной (при любых аргументах принимает значение либо 1 либо 0) или сбалансированной (для одной половины области определения принимает 1, а для другой половины 0). При этом мы знаем, функция является либо постоянной, либо сбалансированной.

Можно выделить два типа квантовых компьютеров. Они основываются на квантовых явлениях, только разного порядка.

В основе первого типа квантовых компьютеров лежит квантование магнитного потока на нарушениях сверхпроводимости. На этих эффектах делают аналого-цифровые преобразователи, линейные усилители.

Для второго типа квантовых компьютеров требуется постоянное поддержание когерентности волновых функций используемых кубитов в течение всего времени вычислений. Их ещё называют квантовые когерентные компьютеры. Для некоторых вычислительных задач мощность когерентных квантовых компьютеров равна 2N . N- это число кубитов в компьютере. Когда говорят о квантовых компьютерах, имеют в виду последний тип устройств.

Проблемы и пути решения созданий квантовых компьютеров

При разработке квантового компьютера возникло множество проблем, которые требуется решить для того, чтобы квантовый компьютер эффективно работал.

Можно выделить несколько наиболее важных проблем:

1. Неустойчивость квантовой суперпозиции.

2. Взаимодействие квантовых компьютеров с внешней средой.

3. Квантово-механическая стабильность физической системы.

1) Неустойчивость квантовой суперпозиции. В момент, когда кубит находится в суперпозиции, на него может повлиять любое взаимодействие с внешней средой. Из-за чего он принимает одно единственное значение и теряет свои вычислительные свойства. Во время квантовых вычислений кубит должен быть полностью изолирован от внешней среды.

2) Взаимодействие квантовых компьютеров с внешней средой. Из первой проблемы как следствие вытекает вторая. Для того, чтобы кубит «мог долго находится в суперпозиции», ему нужен ряд условий:

а) Полный вакуум, то есть отсутствие других каких-либо частиц.

б) Очень низкие температурные условия. Квантовый 5-кубитныйкомпьютер IBM Quantum Experienceработает при 0,024К (–273,126 градуса Цельсия). При такой низкой температуре замедляются движения молекул.

3) Нужно уметь воздействовать на отдельные кубиты. А также иметь возможность измерить состояние квантовой системы на входе.

Область применения квантовых компьютеров

1. Медицина. Молекулярное моделированиепоможет создать новые лекарства и моделировать свойства химических веществ. Например, Googleуже смогли сымитировать энергию молекулы водорода.

2. Финансовые услуги. Квантовый компьютер сможет моделировать разные финансовые ситуации и предотвращать риски при большом количестве случайных сценариев.

3. Прогноз погоды. Создание модели климата для предотвращения стихийных бедствий и моделирования влияния человека на окружающую среду.

4. Квантовая криптография. Создание новых надежных алгоритмов шифрования. Например, чтобы взломать алгоритм классическим компьютером, нужно перебрать все возможные варианты. Это требует огромного количества времени,что делает эту операциюдорогостоящей и не практичной. А квантовые компьютеры могут выполнять такое разложение гораздо быстрее и эффективнее. И это не весь список, ведь по мере развития квантовых компьютеров будут расширяться возможности и сферы их применений.

5. Моделирование других квантовых систем. Например, моделирование молекулы сложных химических соединений (белков).

Заключение

Вместе с квантовым компьютером наступит новая эра вычислений и научных открытий. Если создать квантовый компьютер из 200 кубитов, то мощность этого компьютера будет равна больше чем число атомов во всей вселенной. Что позволит моделировать различные физические системы.

На данный момент я работаю над созданием макета квантового компьютера, который будет показывать основной принцип работы квантовых вычислений. Он будет работать на фотонах (Приложение 2). Эта схема моего квантового компьютера на фотонах. На этом макете я планирую проверить работу алгоритма Дойча – Йожи.

Также я проверил работу алгоритма Дойча – Йожи на настоящем 2–кубитном квантовом компьютере компании IBM (См. Приложение 3). По результатам этого опыта можно сказать, что функция является сбалансированной (См. Приложение 4). Квантовый компьютер это прорыв в науке.

Выводы

Пока квантовые компьютеры способны выполнять простые задачи. Но в дальнейшем, с развитием квантовых технологий и вычислений, они будут способны выполнять очень сложные задачи, которые не способен выполнить простой компьютер. В квантовом компьютере скрыт большой потенциал.

Если говорить о конкретных темах физики из раздела «Квантовая физика», применяемых для создания и работы квантового компьютера, то это:

Полупроводники. Твердотельные квантовые точки на полупроводниках: в качестве кубитов используются зарядовые состояния электронного и ядерного спина в данной квантовой точке. Управление через внешние потенциалы или лазерным импульсом.

Сверхпроводники. Сверхпроводящие элементы. В качестве логических кубитов используются присутствие или отсутствие куперовской пары в определённой пространственной области. Управление: внешний потенциал, т.е. магнитный поток.

Фотоны. Смешанные технологии: использование заранее приготовленных запутанных состояний фотонов для управления атомными группами или как элементы управления классическими вычислительными сетями.

Проведя данные исследования, я пришел к выводу, что квантовый компьютер объединяет в себе достижения компьютерной науки и квантовой физики, следовательно, гипотеза подтвердилась.

ganin-1.tif

Функциональная схема аппаратуры для квантовых вычислений: 1 – классическая быстродействующая ЭВМ; 2 – квантовый процессор; 3, 4 – устройства записи информации в квантовые регистры; 5 – устройство управления квантовыми операциями; 6 – устройство считывания информации с кубитов

ganin-2a.tif

Модель квантового компьютера на фотонах: 3, 5, 1 – лазер; 4 2 – линейный поляризатор; 4 3 – светоделительный кубик; 5 3 4 – полуволновая пластина; 5 – зеркало

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector